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Practical Machine Learning

Dr. Suyong Eum

Lecture 9

TensorFlow – CNN implementation
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Reinforcement 
Learning

Supervised 
Learning

Unsupervised 
Learning

 LCR (week2)
 SVM (week5)
 CNN (week8)
 RNN (week10)

 GMM (week3)
 HMM (week4)
 PCA (week6)
 VAE (week12)
 GAN (week12)

 DQN (week14)
 PG (week14)

Where we are

Its implementation



3

You are going to learn

 About TensorFlow

 Its operational concept

 Convolutional Neural Network implementation

- Data loading

- Model

- Loss and Accuracy

- Training

- Testing
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 In 2011, Google developed a deep learning infrastructure called “DistBelief” for its internal use.
- 1st Generation Machine Learning Framework

- Concept “cat” learned from unlabeled YouTube images,
- Improvement of speech recognition in the Google app by 25%,
- Built image search in Google Photos,
- Trained the inception model that won ImageNet competition in 2014,
- Automated image captioning as well as deepdream.

Tensorflow History
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 In 2011, Google developed a deep learning infrastructure called “DistBelief” for its internal use.
- 1st Generation Machine Learning Framework

- Concept “cat” learned from unlabeled YouTube images,
- Improvement of speech recognition in the Google app by 25%,
- Built image search in Google Photos,
- Trained the inception model that won ImageNet competition in 2014,
- Automated image captioning as well as deepdream.

 Problems with “DistBelief”
- Uniquely targeted to Neural networks
- Tightly coupled to Google’s internal infra: difficult to share and to open to public

 In Nov. 2015, google launched “TensorfFlow”
- General, flexible, portable, easy-to-use, and open-source
- Now “TensorFlow” replaced “DistBelief” in Google.

Tensorflow History
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 Practically proven by google for their inner projects.
- TF was built with production use in mind, whereas others were designed by researchers almost purely 

for research purposes.

 Easily build models that span multiple GPUs on a single machine, and to train large-scale networks 
in a distributed fashion.

- Automatically discovers and uses GPUs and CPUs for computations.
- By default, it occupies 100% of GPU resource. Of course, you can control.

 Although Tensorflow was inspired by Theano, major development of Theano would be ceased after its 1.0 
release (after 2017) due to competing offerings by strong industrial players, e.g., google, facebook, MS, etc. 

Why is Tensorflow?

https://en.wikipedia.org/wiki/Theano_(software)


7 https://github.com/mahehu/deeplearning_issues

Popularity of other ML frameworks
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 Tensor: a multidimensional array of numbers, e.g., 4D [batch, height, width, channel]
- 1d tensor : vector
- 2d tensor : matrix
- 3d tensor : cube
- 4d tensor : a vector of cubes
- 5d tensor : a matrix of cubes
- 6d tensor : a cube of cubes

Tensorflow = Tensor + Flow
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 Tensorflow is a programming system in which you represent computations as graphs.

- Nodes in the graph are called ops (short for operations).

- An op takes tensors to perform some computation and to produce tensors.

- A tensorflow graph is a description of computations.

https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch09.html

What is Tensorflow?

f(x, y) = x2y + y + 2
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Operational concept of Tensorflow

 Tensorflow programs are usually structured into a construction phase and an execution phase.
- Construction phase: building a model using a graph, e.g., with python
- Session phase: launching the model on devices such as CPU or GPU
- Execution phase: executing the model on highly-optimized C++

Session
Phase

(launching the model on 
Devices such as CPUs or GPSs)

Python: define the  
computational graph

C++:  run the graph with 
the highly-optimized C++ 1) Allocate resource on devices, e.g., CPUs or GPUs, 

2) Load the graphs on the devices,
3) Get ready to optimally execute the graph
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 Creating a session is similar to opening a file: communicating with a device, e.g., GPU
- sess = tf.Session()
- sess.close()
- e.g., with tf.Session() as sess: # don’t worry about closing session

 When a session begins, CPU or GPU resource is occupied.

Operational concept of Tensorflow: session
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Example of Tensorflow operation

Construction phase +
a=5

b=6

c=11

Execution phase

import tensorflow as tf
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Three data types

Constant Variable Placeholder

• Constant value which does not 
change during runtime

• Weight, bias, etc., which keep 
being updated during runtime.

• Need to be initialized.

• Data which gets fed into the 
model
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Three data types - Variable

truncated_normal(
shape,
mean=0.0,
stddev=1.0,
dtype=tf.float32,
seed=None,
name=None

)

This initialization step is mandatory .

When the model does not learn from data, 
this is the one you need to check first.

It is required when variables are 
saved and restored later.
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Three data types - Placeholder

placeholder(
dtype,
shape=None,
name=None

)

Modela=[[1,2],[3,4]]

a[0]=[1,2],
a[1]=[3,4]

CPU/GPU

session

a[0]=[1,2]

a=[[1,2],[3,4]]

1) a[0]=[1,2]
2) a[1]=[3,4]

 whole data set

 batch data set
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Implementation of CNN

Convolutional Neural Network implementation
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Implementation of CNN

1) Data loading

2) Model definition

3) Evaluation: Loss and Accuracy

4) Training

5) Testing: saving and reloading variables
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1) Data loading: MNIST

 MNIST data set

- http://yann.lecun.com/exdb/mnist/

- Training data

- One single file (45M) which includes 60,000 hand digit images for training,

- One single file (59K) which includes corresponding labels.

- Testing data

- One single file (7.5M) which includes 10,000 hand digit images for testing,

- One single file (9.8K) which includes corresponding labels.

https://tiny-imagenet.herokuapp.com/
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1) Data loading: Tiny ImageNet 

data folder label file

file1 - frog
file2 – fish

.

.

.
file - snake

 Tiny ImageNet data set
- https://tiny-imagenet.herokuapp.com/
- 100,000 jpeg image files for training:

- 200 classes (200 folders)
- 500 images per class
- Not only label but also coordination for object detection in each image file

- words.txt
- 10,000 jpeg image files for validating with label
- 10,000 jpeg image files for testing without label 

https://tiny-imagenet.herokuapp.com/
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1) Data loading – Tiny ImageNet 

 Tiny ImageNet data set

This is the labels for images under val directory (there are 10000 labels)

List of labels

Label description
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1) Data loading – queue runner

Model

[data_file_1
data_file_2
data_file_3

.

.
data_file_n]

threads

Data
Queue

File name
Queue

Hard 
disk read

read

read

decoding

decoding

decoding

Batching 
data set

105 image files

 When a large number of files are loaded, they are asynchronously loaded in parallel.
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1) Data loading – queue runner

 File names are inserted 
into file name queue
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1) Data loading – queue runner

 File names are inserted 
into file name queue
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1) Data loading – queue runner

 File names are inserted 
into file name queue
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1) Data loading – queue runner

 File names are inserted 
into file name queue
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1) Data loading – queue runner

32 x Image (64x64x3)



27

2) Model: Convolutional Neural Networks 

64

64

3

64

64

16 32

64

64

.

.

.

.

.

.

Conv1

64x64x32 500

Conv2image

3x3x3

FC1

FC2

Output 
layer

64

64

[64, 64, 3]

.

.

.

200

200
classes

Why same size ?

.

.

.

200
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Conv1

Conv2

FC1

FC2

Output 
layer

 truncated_normal ()
- shape =[height, width, channel, batch_size])

 conv2d()
- strides = [batch_size, height, width, channel]

 max_pool()
- ksize = [batch_size, height, width, channel]
- strides = [batch_size, height, width, channel]
- padding = ‘SAME’ or ‘VALID’

2) Model: Convolutional Neural Networks - Conv
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2) Model: Convolutional Neural Networks - FC 

Conv1

Conv2

FC1

FC2

 tf.reshape(hidden2, [-1, 64*64*32])
Output 

layer
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2) Model: Convolutional Neural Networks – Output layer

Conv1

Conv2

FC1

FC2

 We are going to use “softmax_cross_entropy_with_logits()”, which 
includes “softmax” activation function inside. Thus, the outcome is 
used without going through any activation function. 

Output 
layer
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3) Evaluation: loss calculation

 tf.nn.softmax_cross_entropy_with_logits(prediction, label)
- prediction: predicted label which is the output from the previous layer

- e.g., [0.1, 0.4, 0.5]
- label: true label, one-hot encoded

- e.g., [0, 0, 1]

batch1 Prediction Label Cross Entropy (error) batch2 Prediction Label Cross Entropy(error)

Data1-1 0.1, 0.2, 0.7 0, 0, 1 -ln(0.1)*0-ln(0.2)*0-ln(0.7)*1 = 0.357 Data2-1 0.3, 0.3, 0.4 0, 0, 1 -ln(0.3)*0-ln(0.3)*0-ln(0.4)*1 = 0.916

Data1-2 0.1, 0.6, 0.3 0, 1, 0 -ln(0.1)*0-ln(0.6)*1-ln(0.3)*0 = 0.511 Data2-2 0.3, 0.4, 0.3 0, 1, 0 -ln(0.3)*0-ln(0.4)*1-ln(0.3)*0 = 0.916

Data1-3 0.3, 0.3, 0.4 1, 0, 0 -ln(0.3)*1-ln(0.3)*0-ln(0.4)*0 = 1.204 Data2-3 0.1, 0.1, 0.8 1, 0, 0 -ln(0.1)*1-ln(0.1)*0-ln(0.8)*0 = 2.303

Mean 0.691 Mean 1.287

. . .

200

1
0
0
0
.
.
.
0

0
1
0
0
.
.
.
0

Output from softmax function Output from softmax function
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3) Evaluation: loss calculation

 tf.nn.softmax_cross_entropy_with_logits(prediction, label)
- prediction: predicted label which is the output from the previous layer

- e.g., [0.1, 0.4, 0.5]
- label: true label, one-hot encoded

- e.g., [0, 0, 1]

batch1 Prediction Label Cross Entropy (error) batch2 Prediction Label Cross Entropy(error)

Data1-1 0.1, 0.2, 0.7 0, 0, 1 -ln(0.1)*0-ln(0.2)*0-ln(0.7)*1 = 0.357 Data2-1 0.3, 0.3, 0.4 0, 0, 1 -ln(0.3)*0-ln(0.3)*0-ln(0.4)*1 = 0.916

Data1-2 0.1, 0.6, 0.3 0, 1, 0 -ln(0.1)*0-ln(0.6)*1-ln(0.3)*0 = 0.511 Data2-2 0.3, 0.4, 0.3 0, 1, 0 -ln(0.3)*0-ln(0.4)*1-ln(0.3)*0 = 0.916

Data1-3 0.3, 0.3, 0.4 1, 0, 0 -ln(0.3)*1-ln(0.3)*0-ln(0.4)*0 = 1.204 Data2-3 0.1, 0.1, 0.8 1, 0, 0 -ln(0.1)*1-ln(0.1)*0-ln(0.8)*0 = 2.303

Mean 0.691 Mean 1.287

. . .

200

1
0
0
0
.
.
.
0

0
1
0
0
.
.
.
0

Mean of results from batch images
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3) Evaluation: loss calculation

 tf.nn.softmax_cross_entropy_with_logits(prediction, label)
- prediction: predicted label which is the output from the previous layer

- e.g., [0.1, 0.4, 0.5]
- label: true label, one-hot encoded

- e.g., [0, 0, 1]

 Do not implement the functions separately: (numerical unstability)
- tf.nn.softmax(prediction) 
- tf.reduce_mean(-tf.reduce_sum(label*tf.log(prediction), reduction_indices=[1]))

batch1 Prediction Label Cross Entropy (error) batch2 Prediction Label Cross Entropy(error)

Data1-1 0.1, 0.2, 0.7 0, 0, 1 -ln(0.1)*0-ln(0.2)*0-ln(0.7)*1 = 0.357 Data2-1 0.3, 0.3, 0.4 0, 0, 1 -ln(0.3)*0-ln(0.3)*0-ln(0.4)*1 = 0.916

Data1-2 0.1, 0.6, 0.3 0, 1, 0 -ln(0.1)*0-ln(0.6)*1-ln(0.3)*0 = 0.511 Data2-2 0.3, 0.4, 0.3 0, 1, 0 -ln(0.3)*0-ln(0.4)*1-ln(0.3)*0 = 0.916

Data1-3 0.3, 0.3, 0.4 1, 0, 0 -ln(0.3)*1-ln(0.3)*0-ln(0.4)*0 = 1.204 Data2-3 0.1, 0.1, 0.8 1, 0, 0 -ln(0.1)*1-ln(0.1)*0-ln(0.8)*0 = 2.303

Mean 0.691 Mean 1.287

. . .

200

1
0
0
0
.
.
.
0

0
1
0
0
.
.
.
0
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3) Evaluation: accuracy calculation

. . .

200

1
0
0
0
.
.
.
0

0
1
0
0
.
.
.
0

 tf.argmax(tensor, 1): return index of the item which has the max value

 tf.equal(x, y): return true if x==y otherwise false

prediction label x = tf.argmax
(prediction)

y = tf.argmax
(label)

z = tf.equal(x,y) tf.cast(z)

Data1-1 0.1, 0.2, 0.7 0, 0, 1 2 2 True 1

Data1-2 0.1, 0.6, 0.3 0, 1, 0 1 1 True 1

Data1-3 0.3, 0.3, 0.4 1, 0, 0 2 0 False 0

2/3
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3) Evaluation: accuracy calculation

 tf.argmax(tensor, 1): return index of the item which has the max value

 tf.equal(x, y): return true if x==y otherwise false

. . .

200

1
0
0
0
.
.
.
0

0
1
0
0
.
.
.
0

prediction label x = tf.argmax
(prediction)

y = tf.argmax
(label)

z = tf.equal(x,y) tf.cast(z)

Data1-1 0.1, 0.2, 0.7 0, 0, 1 2 2 True 1

Data1-2 0.1, 0.6, 0.3 0, 1, 0 1 1 True 1

Data1-3 0.3, 0.3, 0.4 1, 0, 0 2 0 False 0

accuracy 2/3
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4) Training

 tf.train.AdamOptimizer(learning_rate).minimize(loss)

- https://arxiv.org/pdf/1412.6980.pdf
- Now Adam is now recommended as the default algorithm to use.

__init__(
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='Adam'

)

minimize(
loss,
global_step=None,
var_list=None,
gate_gradients=GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
name=None,
grad_loss=None

)

https://arxiv.org/pdf/1412.6980.pdf
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5) Testing: checkpoint saving
 Creating an instance of Saver()

- In default, all values in the model are saved,
- Values can be saved selectively.

__init__(
var_list=None,
reshape=False,
sharded=False,
max_to_keep=5,
keep_checkpoint_every_n_hours=10000.0,
name=None,
restore_sequentially=False,
saver_def=None,
builder=None,
defer_build=False,
allow_empty=False,
write_version=tf.train.SaverDef.V2,
pad_step_number=False,
save_relative_paths=False,
filename=None

)

keep last 5 checkpoints

saver = tf.train.Saver()
Save all values
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5) Testing: checkpoint saving

save(
sess,
save_path,
global_step=None,
latest_filename=None,
meta_graph_suffix='meta',
write_meta_graph=True,
write_state=True

)

 Running a save() method on a session.
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5) Testing: checkpoint saving

 After saving, there will be three files under the specified directory
- checkpoint: list of saving points including the latest one.
- .meta: the complete Tensorflow graph structure which is used for restoring the graph.
- .index and .data: actual values of variables: weights, biases, etc.

Most recent one

Directory name
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5) Testing: checkpoint restoring 

 Reusing the graph definition used in the training.
- For validating your trained CNN when they 

still have labels.

 Redefining a clean test graph 
- For testing your trained CNN with individual 

image files without labels.
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5) Testing: checkpoint restoring 

 Reusing the graph definition used in the training.
- For validating your trained CNN when they 

still have labels.

 Redefining a clean test graph 
- For testing your trained CNN with individual 

image files without labels.
- It is difficult to feed the data to the training 

model since it is optimized for reading data 
from files.

- For evaluation, we only need “CNN” part.

Trained CNN 

Weight values

1) Data loading
2) Model 
3) Evaluation 
4) Training

Graph

A new testing CNN 

1) Model 

Graph

“placeholder”
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5) Testing: checkpoint restoring 

Trained CNN 

Weight values

1) Data loading
2) Model 
3) Evaluation 
4) Training

Graph

1) Model 

Graph

“placeholder”

Importing the trained 
CNN from a checkpoint

A new testing CNN 

Extracting only weight 
and bias to build our 
new testing CNN
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5) Testing: checkpoint restoring 

Trained CNN 

Weight values

1) Data loading
2) Model 
3) Evaluation 
4) Training

Graph

1) Model 

Graph

“placeholder”

A new testing CNN 

Defining a new 
testing CNN with 
“placeholder”
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5) Testing: checkpoint restoring 

Trained CNN 

Weight values

1) Data loading
2) Model 
3) Evaluation 
4) Training

Graph

1) Model 

Graph

“placeholder”

A new testing CNN 

Defining a new 
testing CNN with 
“placeholder”
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Backup Slides
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Tensorboard: plotting defined graph

 tf.summary.merge_all()
 train_writer = tf.summary.FileWriter(‘./tensorboard/’, sess.graph) 
 train_writer.close() # closing when jobs are done

 Under the directory of “./tensorboard/”, 
the files are created as follows:

creating an event file in the given directory 
and add summaries and events to it.
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Tensorboard: plotting defined graph

 Once the log files are created, execute the command below:
- tensorboard --logdir=path/to/log-directory

 Then, in a browser, typing the below (similar to Jupyter notebook)
- localhost:6006

 When a graph looks complicated, a scope can be defined.
 All information under the scope is displayed under the name 

of the scope.
- with tf.name_scope(‘cnn_layer1’):
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Tensorboard: plotting loss and accuracy

 Summary  operations
- Summaries provides a way to export 

condensed information about a model, 
which is then accessible by Tensorboard.

 add_summary: a method of FileWriter class
- Adds the scalar values to the event file.


