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Where we are

Supervised
Learning

= LCR (week2)
= SVM (week5)
= CNN (week8)
= RNN (week10)

= GMM (week3)
= HMM (week4)
= PCA (weekb)

= VAE (week12)
= GAN (week12)

= DQN (week14)

= PG (week14) Reinforcement

Learning

Unsupervised
Learning



You are going to learn

d Why we need PCA
(d How to obtain principal components

- Eigen value decomposition and singular value decomposition
(d SVD: data compression and visualization
(d How to apply PCA for machine learning



Principal Component Analysis (PCA): definition

A statistical procedure that uses an orthogonal transformation
to convert a set of observations of possibly correlated variables

into a set of values of linearly uncorrelated variables called
principal components.

In Wikipedia:
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Principal Component Analysis (PCA): intuition

J How to select a principal component?
- One that captures the largest variance of
the data points.
d Why?
- Because we want to clearly see how each
data point is related (close) each other.
- Then, which one (PC1 or PC2) is better?




How to find the principal components showing the largest variance?
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Largest eigen value of the covariance matrix == largest variances in the data set?

O “m.” shows the distance between 0 (mean) to the point where

u.,”n

x;” is projected on the vector “V”.

m. =X.V

O Let’s define the variance of data points “m”

var(m) = 15 > (m - v = 5> v

 Let’s maximize the variance with a constraint (v must be an
unit vector). Then, see what it would be.
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Largest eigen value of the covariance matrix == largest variances in the data set?

O Let’s convert the constrained problem to unconstrained problem
using Lagrange method (again!).
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d We look for the vector “v” which maximizes the variance.
Thus, differentiating the above with respect to “v”
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1 N 5 =  When “v” is selected to maximize the variance, covariance
S Z (X. ) V=LAV matrix becomes equivalent to its own eigen value.
N -1 i1 I = Eigen value has diagonal elements, which represent
Covariance Eigen value variances along eigen vectors — no correlation.



How to find the principal components showing the largest variance?

1) Find the covariance matrix of data points.

2) Obtain the eigen values and vectors of the
covariance matrix: eigen decomposition.

3) Sort the eigen vectors in descending order in
terms of their corresponding eigen values.
- an eigen vector with the largest eigen value
becomes the first principal component.
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How to find the principal components showing the largest variance?

O Actually, there is a more convenient way of doing it (finding eigen vectors).
O Itis called “Singular Value Decomposition” or SVD.

Eigen decomposition Singular Value Decomposition (SVD)
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How to find the principal components showing the largest variance?
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Eigen decomposition
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O Actually, there is a more convenient way of doing it (finding eigen vectors).
O Itis called “Singular Value Decomposition” or SVD.

Singular Value Decomposition (SVD)
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Singular Value Decomposition (SVD): data compression
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Singular Value Decomposition (SVD): data compression
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Singular Value Decomposition (SVD): data compression
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(317+1+436) x 100 = 75400




Back to PCA: dimension reduction
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2 dimension data points can be represented
into one dimension space (v,)
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Back to PCA: dimension reduction
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Back to PCA: example
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How to use PCA for machine learning?
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A digit number with 64 dimension can be shown in 2 dimension space (v, and v,).
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How to use PCA for machine learning?

 Each digit number has 8 by 8 = 64 dimensions.
J After SVD, the first two principal components are selected, and the data
points with 64 dimension are plotted in two dimension.
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One that you need to be careful when carrying out PCA

1 Centering the data before applying PCA.
d Normalizing or standardizing the data when features have different scale.

featurel feature2 ‘- feature m

Country 1 5*10AN7 92 Data 1 all a12 coe aln
Country 2 ~ 2*1077 74 Data 2

Data n a, a., - a.
Countryn 5 *1078 150 i |

That needs to be normalized
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Backup Slides



Singular Value Decomposition (SVD): data compression

436

k=100

317

(317+1+436) x 100 = 75400

img = imread("sample_BW.png")[:,:]
imshow(img)
show()

# Top 100

U,S,Vt = svd(img)

S = resize(S, [m,1])*eye(m,n)

imshow(dot(U[:,0:100], dot(S[0:100,0:100], Vt[0:100,:])))
show()
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