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Practical Machine Learning

Dr. Suyong Eum

Lecture 6

Principal Components Analysis (PCA)
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Reinforcement 
Learning

Supervised 
Learning

Unsupervised 
Learning

 LCR (week2)
 SVM (week5)
 CNN (week8)
 RNN (week10)

 GMM (week3)
 HMM (week4)
 PCA (week6)
 VAE (week12)
 GAN (week12)

 DQN (week14)
 PG (week14)

Where we are
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You are going to learn

 Why we need PCA

 How to obtain principal components

- Eigen value decomposition and singular value decomposition

 SVD: data compression and visualization

 How to apply PCA for machine learning
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In Wikipedia:

A statistical procedure that uses an orthogonal transformation 
to convert a set of observations of possibly correlated variables 
into a set of values of linearly uncorrelated variables called 
principal components.

Principal Component Analysis (PCA): definition
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PC1

 How to select a principal component?
- One that captures the largest variance of 

the data points.
 Why?

- Because we want to clearly see how each 
data point is related (close) each other.

- Then, which one (PC1 or PC2) is better?

PC2

Principal Component Analysis (PCA): intuition
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How to find the principal components showing the largest variance?
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 Distance to data points from the mean along the axis of “v1” 
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 Distance to data points from the mean along the axis of “v2”  
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Largest eigen value of the covariance matrix == largest variances in the data set?
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 Let’s maximize the variance with a constraint (v must be an 
unit vector). Then, see what it would be.
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 Let’s define the variance of data points “m”  

An Unit vector

 “mi” shows the distance between 0 (mean) to the point where 
“xi” is projected on the vector “V”.
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Largest eigen value of the covariance matrix == largest variances in the data set?

 Let’s convert the constrained problem to unconstrained problem 
using Lagrange method (again!).
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 We look for the vector “v” which maximizes the variance. 
Thus, differentiating the above with respect to “v”
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 When “v” is selected to maximize the variance, covariance 
matrix becomes equivalent to its own eigen value.

 Eigen value has diagonal elements, which represent 
variances along eigen vectors – no correlation.

Eigen value 
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How to find the principal components showing the largest variance?

1) Find the covariance matrix of data points.

2) Obtain the eigen values and vectors of the 
covariance matrix: eigen decomposition.

3) Sort the eigen vectors in descending order in 
terms of their corresponding eigen values.
- an eigen vector with the largest eigen value 

becomes the first principal component.

1st principal 
component

2nd principal 
component

1st principal 
component

2nd principal 
component
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How to find the principal components showing the largest variance?

 Actually, there is a more convenient way of doing it (finding eigen vectors).
 It is called “Singular Value Decomposition” or SVD.
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How to find the principal components showing the largest variance?

 Actually, there is a more convenient way of doing it (finding eigen vectors).
 It is called “Singular Value Decomposition” or SVD.

TT VVXX  TVUX 

Singular Value Decomposition (SVD)Eigen decomposition
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Singular Value Decomposition (SVD): data compression

TVUX 
mnX R mn R

nnU R

mmV R

=

X: 6x2 U: 6x6 Σ: 6x2 V: 2x2
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Singular Value Decomposition (SVD): data compression

TVUX 
mnX R mn R

nnU R

mmV R

T

222

T

111X vuvu  

=

X: 6x2 U: 6x2 Σ: 2x2 V: 2x2

 New coordination system which has two basis (v1 and v2)
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Singular Value Decomposition (SVD): data compression

X: 317x436 = 138212
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(317+1+436) x 100 = 75400

k=100



15

Back to PCA: dimension reduction
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2 dimension data points can be represented 
into one dimension space (v1)
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2 dimension data points can be represented 
into one dimension space (v1)
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Back to PCA: dimension reduction

1st Principal 
Component
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Back to PCA: example
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How to use PCA for machine learning?
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A digit number with 64 dimension can be shown in 2 dimension space (v1 and v2).
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How to use PCA for machine learning?





 Each digit number has 8 by 8 = 64 dimensions.
 After SVD, the first two principal components are selected, and the data 

points with 64 dimension are plotted in two dimension. 

1st Principal 
Component

2nd Principal 
Component
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One that you need to be careful when carrying out PCA

 Centering the data before applying PCA.
 Normalizing or standardizing the data when features have different scale.
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Data 2

Data n
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That needs to be normalized
…

feature2 …

population area

Country 1 5*10^7 92

Country 2 2*10^7 74

… … …

Country n 5 *10^8 150
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Backup Slides
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Singular Value Decomposition (SVD): data compression

X: 317x436 = 138212

=
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(317+1+436) x 100 = 75400

k=100

img = imread("sample_BW.png")[:,:]
imshow(img)
show()

# Top 100 
U,S,Vt = svd(img)
S = resize(S, [m,1])*eye(m,n)
imshow(dot(U[:,0:100], dot(S[0:100,0:100], Vt[0:100,:])))
show()

k=100


