
Practical Machine Learning

Dr. Suyong Eum

Lecture 5
Support Vector Machine (SVM) and Kernel trick
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A question from the last class

Resource Time Accuracy

Laplace approach
(Gaussian approximation)

Good Good Worse

Sampling
(Numerical approach)

Worse Worse Good

Variational Inference
(Analytical approach)

Medium Medium Medium

 How do we infer p(Z|X) using q(Z)?
- Only data X are given
- p(X,Z) is known
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 When the variable z is continuous
 When the number of variables z is many (?)
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Laplace approach
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Normalizing factor, 
which is unknown

 Finding the mode of the posterior distribution and then fitting a Gaussian centered at that mode.
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Sampling approach

Burglary Earthquake

Alarm

John Call Mary Call

P(B)=0.001 P(E)=0.001

A P(J|A)

T 0.90

F 0.05

B E P(A|B,E)

T T 0.90

T F 0.05

F T 0.29

F F 0.001

)|()|(),|()()(),,,,( AMpAJpEBApEpBpMJAEBp =

A P(M|A)

T 0.70

F 0.01

),|,,( MAJEBp

),|(),,,|( BAEpMJABEp =

)|(),,,|( AJpMAEBJp =

),|(),,,|( EABpMJAEBp =

?
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Sampling approach
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Variational inference

 The idea is
- Finding p(Z|X) by minimizing Kullback divergence to q(Z)
- Minimizing KL between p(Z|X) and q(Z) is equivalent to maximizing a function where the 

conditional distribution p(Z|X) is replaced with the joint distribution p(Z, X).
- Factorizing the joint distribution on the assumption that the latent variables Z are independent.
- Developing the derivation in terms of one latent variable on the assumption of the other latent 

variables are known.
- Then, do some algebra..

 Refer the backup slides which include the derivation
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Where we are

Reinforcement 
Learning

Supervised 
Learning

Unsupervised 
Learning

 LCR (week2)
 SVM (week5)
 CNN (week8)
 RNN (week10)

 GMM (week3)
 HMM (week4)
 PCA (week6)
 VAE (week12)
 GAN (week12)

 DQN (week14)
 PG (week14)
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You are going to learn

 An idea of Support Vector Machine (SVM)
 Problem formulation of SVM

- Linear classification: Hard Margin SVM
 Non-linear classification

- Soft Margin SVM
- Kernel trick
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Why Support Vector Machine?

 Most widely used classification approach (practical)
- Linearly separable data set
- Linearly separable data set with a few violation
- Non-linearly separable data set

 Supported by well defined mathematical theories
- Geometry,
- Optimization,
- Quadratic programming, 
- Lagrange method, 
- Kernel, etc.
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Which one is better for classification?



Decision 
boundary

Margin

Support 
Vectors
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lines
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Terminology used in this lecture
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Some geometry
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Some geometry

),( 21 ww
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Margin distance

Unit vector showing 
the direction only

Size of the vector 
(xb->xc)
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To make the margin become one… (see later)



2x

1x
w

cx

|||| rbx

001122 =++ wxwxw

||w||
1||||max =r

 Finding a decision boundary which maximizes 
the margin.
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Problem formulation
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meaning that any data point is away 
from the decision boundary at least 1

Quadratic programming
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Problem formulation
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 Let’s make it a quadratic programming problem.
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Option 1 Soft margin SVM
Option 2 Kernel trick
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How about non-linearly separable case?



Soft margin SVM
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Option 1: soft margin SVM
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ε

 Remember the constraint below?
nwt nn ∀≥+ ,1)x(w 0

T

: slack

 For the data points which are non-separable, we relax
the constraint:

nwt nnn ∀−≥+ ,1)x(w 0
T ε 0≥nε

 It says that the distance between a data point and the 
decision boundary is allowed to be less than 1.

 is called slack variables.

 Question. Where is a data point when             ?1=nε

nε

0 1-1

1

nε
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Option 1: soft margin SVM
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 So we have the constraint below. How about the 
objective function?

: slack  We want to minimize the slack. 

nwxt nnn ∀−≥+ ,1)(w 0
T ε 0≥nε

2||w||
2
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n nC ε

 If “C” is small, the slack contributes more                 
1) Prefer large margin
2) May cause large # of misclassified data points. 

 If “C” is large, the slack contributes less
1) Prefer less # of misclassified data points.
2) May cause small margin.

“C” is small “C” is large
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Option 1: soft margin SVM
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Option 1: soft margin SVM



Kernel trick
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Option 1: soft margin SVM
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Lagrange method for an optimization problem with inequality constraints

2min x
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−−λ
λ
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 Minima is zero when b ≤ 0
 Minima is “b2” when b > 0
 It means at optima: λ(x-b) = 0 (complementary slackness)
 Maximizing λ results in minimizing the objective value

- λ ≥ 0 (it should be because x-b ≥0)

0
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Convert the quadratic problem in SVM to Lagrange optimization problem
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1) Stationarity condition

2) Complementary slackness condition

3) Duality feasibility condition
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 We would like to convert again the optimization problem 
above into another form, which provides same results.
- Because we want to solve the optimization problem in 

term of “lagrange multiplier (λn)”.
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“w” does not appear in the 
equation, and so we do not use 
this constraint anymore

Dual problem of the quadratic problem: applying stationarity condition
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 Again, the optimization problem becomes a quadratic programming problem.
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Finally…
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Let’s summarize

 The solution from the quadratic programming is “lagrange multipliers”(λn)
 Many of the solutions (lagrange multipliers) are zero
 Complementary slackness (one of KKT conditions) should be satisfied.

 In other words, if λn are not zero, (tn(wtxn+w0)-1) should be zero 
where corresponding data points should be support vectors.

 With the non-zero λn, w and w0 can be calculated using tn(wtxn+w0)=1
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 If data xn are not linearly separable, what should we do?

Kernel trick
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 The idea of Kernel trick begins from here: to find the scalar values (the inner product of two vectors: 
zn and zm ) and so we can formulate the quadratic problem which can be linearly separable.

Kernel trick
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 Kernel function K() is a function which returns the scalar values (the inner product of two vectors: 
zn and zm in Z space) when the data points (xn and xm in X space) are given.

Kernel trick
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Finally finally…
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 With the Kernel function defined previously, we want to change the quadratic problem as follows:
- Because the Kernel function is a function of data points (xn and xm ) which we already have.
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Finally finally…
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 Now you have a function, which classifies 
a data point in z space without mapping 
the data point to z space at all.

 Do you see why it is called a trick?
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Polynomial kernel of degree 2
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Gaussian Kernel: derivation (inner product in the infinite z space)

Mapping to infinite-dimension !
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http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex8/ex8.html35

Gaussian Kernel



Backup Slides
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Variational inference: derivation
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Finding q(Z) which minimizes the Kullback divergence
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 Always positive

 KL divergence and lower bound are a function of “q(Z)”
 Minimizing KL divergence is equivalent to maximizing the lower bound (L).

• 4-8=-1
• 1-2=-1∑∑ =+

ZZ
XpZq

Zq
X,ZpZqKL )(log)(

)(
)(log)(

 Always Negative
 Lower bound (L)

 Always negative
 It is a fixed value
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ZXpZqL
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),(log)(

 We do not have this conditional distribution

 We do have the joint distribution

Variational inference: derivation
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Variational inference: derivation
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Assuming that q(z2) is known, and so we just look for q(z1)
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It is one but we keep it for a while

Variational inference: derivation
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Variational inference: derivation



42

∑∑∑ +=−=
111

'

1
121

1
1 )(log

),(log)()(
)(log

),(log)(
zzz

C
zq

ZXfzqKzq
zq

ZXfzqL

[ ] [ ] [ ]),(log),(log),(log 22112),( ZXpEZXpEKKZXpE zzz CeeeeZXf === −−

),(log)(log 1 ZXfzq =

Lower bound (L) is maximized when log q(z1) and log p(X,Z) are equal because it is a negative KL. 
Thus, …
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Variational inference: derivation

We defined it previously
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