

Practical Machine Learning

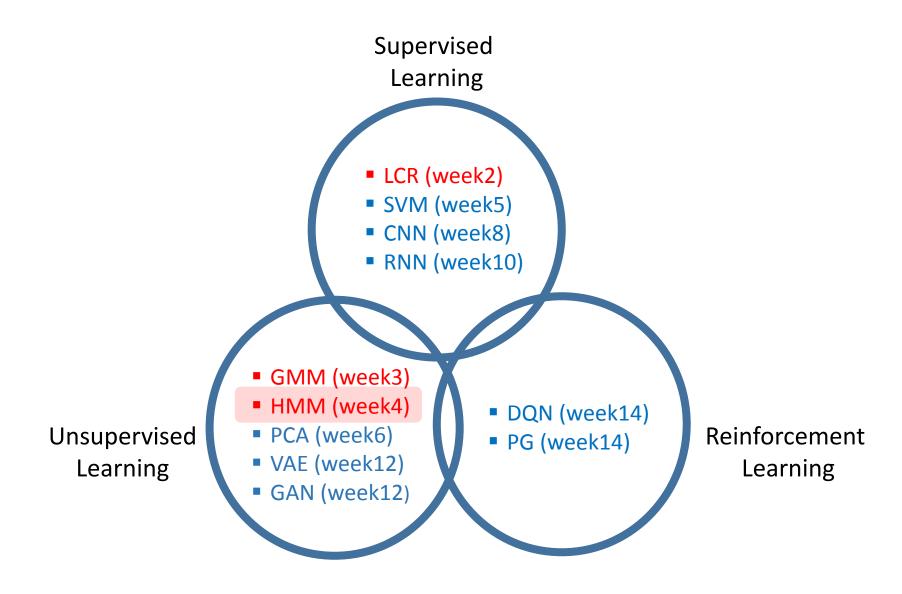
Lecture 4
Hidden Markov Model (HMM)

Dr. Suyong Eum

Administrative

- ☐ Now assignment 3 is on the web: self-regulated open book examination.
 - Short questions every week: let's say 1 to 3 questions,
 - 40% of the total mark,
 - Individual assignment,
 - Due on Aug 3rd.

Where we are

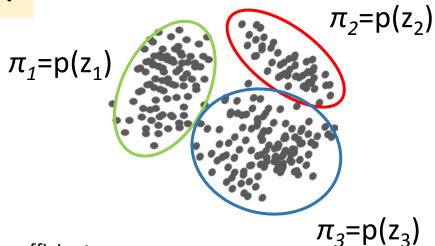


You are going to learn

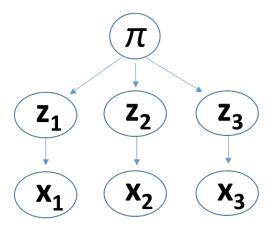
- ☐ Introduction to HMM
- ☐ Three problems in HMM
 - Evaluation problem
 - Decoding problem: Viterbi algorithm
 - Learning problem: Baum-welch algorithm

Gaussian Mixture Model (GMM) vs Hidden Markov Model (HMM)

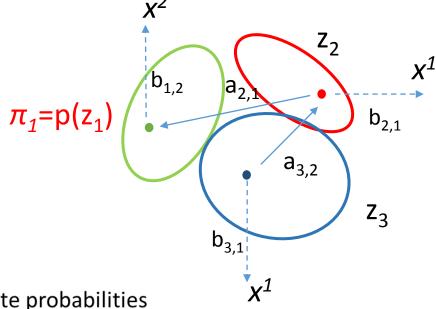
GMM



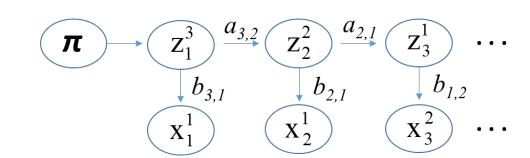
- π : Mixing coefficient
- μ_k : Mean of Kth Multivariate Gaussian
- \sum_{k} : Covariance of Kth Multivariate Gaussian
- Z : Latent variables



HMM



- π : Initial state probabilities
- a: Transition probabilities
- b : Emission probabilities
- Z : Latent variables



Applications of Hidden Markov Model

Speech recognition



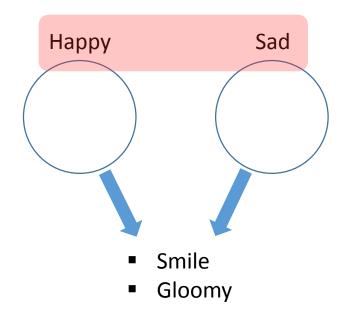
I like to eat an apple
I like to it an apple

Part of speech tagging

Times flies like an arrow Flies fly

Time series analysis

An example: is your boss Happy or Sad?



• Initial state probability: $\pi = p(z_1)$

Нарру	Sad
0.7	0.3

■ Transition probability: p(z_t | z_{t-1})

	Happy (z¹)	Sad (z²)
Happy (z ¹)		
Sad (z²)		

• Emission probability: $p(x_t|z_t)$

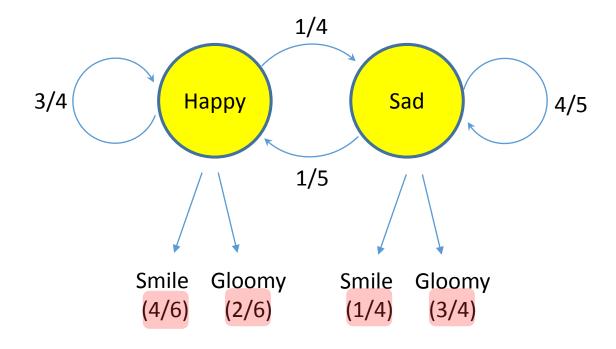
	Happy (z ¹)	Sad (z²)
Smile (x1)		
Gloomy (x ²)		

Three major problems in HMM

	Input (Given)	Output (Find)	Description	
Evaluation problem	π, a, b, X	p (X π, a, b)	Given a set of observation sequences $X = x_1, x_2,, x_t$ and the HMM parameters (π, a, b) , obtaining the probability $p(X \mid \pi, a, b)$	
	e.g.) after obse	e.g.) after observing "Smile-Smile-Gloomy", what is the probability that your boss is happy now?		
Decoding problem	π, a, b, X	p(Z X, π, a, b)	Given a set of observation sequences $X = x_1, x_2,, x_t$ and the HMM parameters (π, a, b) , obtaining the optimal state sequences	
	e.g.) after observing "Smile-Smile-Gloomy", what is his emotional state (happy-happy-sad)?			
Learning problem	X	p(X π, a, b)	Given a set of observation sequences $X = x_1, x_2,, x_t$, adjusting the HMM parameters (π, a, b) to maximize the probability $p(X \mid \pi, a, b)$	
	e.g.) Which parameters of HMM generate the observed data (Smile-Smile-Gloomy)?			

Evaluation problem

Starting from data observed



• π : Initial state probabilities

Нарру	Sad
6/9	3/9

• *a* : Transition probability

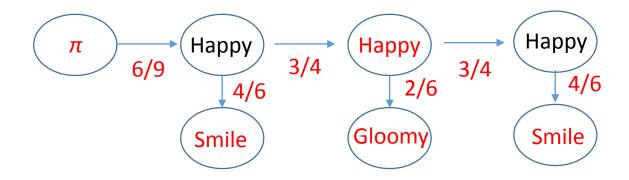
	Нарру	Sad
Нарру	3/4	1/4
Sad	1/5	4/5

• *b* : Emission probability

Нарру		Sad	
Smile	Gloomy	Smile	Gloomy
4/6	2/6	1/4	3/4

Evaluation problem

- ☐ What is the probability to observe the data sequence below?
 - $p(X | \pi, a, b)$



Cases	Probability $(\pi \times b \times a \times b \times a \times b)$
p(Smile-Gloomy-Smile π , a, b)	6/9 x 4/6 x 1/4 x 3/4 x 1/5 x 4/6 = 0.0111

Cases	Probability $(\pi \times b \times a \times b \times a \times b)$
p(Smile-Gloomy-Smile π , a, b)	6/9 x 4/6 x 3/4 x 2/6 x 3/4 x 4/6 = 0.0556

• π : Initial state probabilities

Нарру	Sad
6/9	3/9

• *a* : Transition probability

	Нарру	Sad
Нарру	3/4	1/4
Sad	1/5	4/5

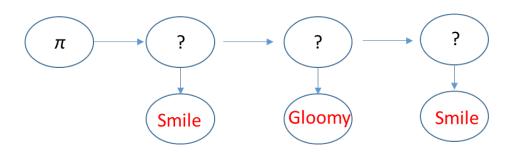
b: Emission probability

Нарру		Sa	ad
Smile	Gloomy	Smile	Gloomy
4/6	2/6	1/4	3/4

Decoding problem with Viterbi algorithm

Decoding problem

- ☐ Which sequence of hidden state is likely to generate observed X?
 - $p(Z|X, \pi, a, b)$



Cases	Probability $(\pi \times b \times a \times b \times a \times b)$	
p(H-H-H X, π, a, b)	6/9 x 4/6 x 3/4 x 2/6 x 3/4 x 4/6	0.0556
p(H-H-S X, π, a, b)	6/9 x 4/6 x 3/4 x 2/6 x 1/4 x 1/4	0.0046
p(H-S-H X, π, a, b)	6/9 x 4/6 x 1/4 x 3/4 x 1/5 x 4/6	0.0111
p(H-S-S X, π, a, b)	6/9 x 4/6 x 1/4 x 3/4 x 4/5 x 1/4	0.0167
p(S-S-H X, π, a, b)	3/9 x 1/4 x 4/5 x 3/4 x 1/5 x 4/6	0.0067
p(<mark>S-H-S</mark> X, π, a, b)	3/9 x 1/4 x 1/5 x 2/6 x 1/4 x 1/4	0.0003
p(S-H-H X, π, a, b)	3/9 x 1/4 x 1/5 x2/6 x 3/4 x 4/6	0.0028
p(S-S-S X, π, a, b)	3/9 x 1/4 x 4/5 x 3/4 x4/5 x 1/4	0.01

• π : Initial state probabilities

Нарру	Sad
6/9	3/9

• *a* : Transition probability

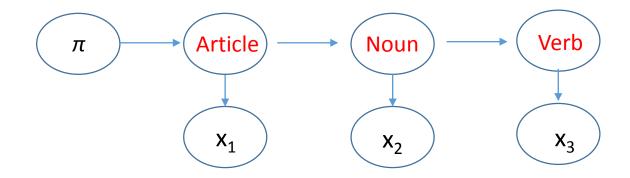
	Нарру	Sad
Нарру	3/4	1/4
Sad	1/5	4/5

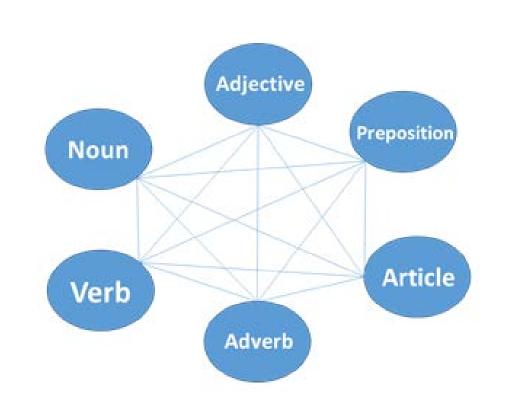
b: Emission probability

Нарру		Sad	
Smile	Gloomy	Smile	Gloomy
4/6	2/6	1/4	3/4

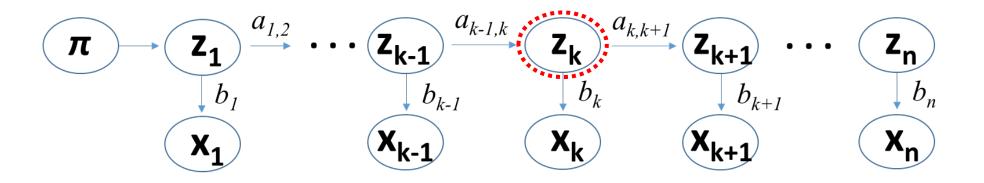
of evaluation exponentially increases

- ☐ The evaluation cost increases exponentially as the number of hidden variables increases.
- (# of hidden states)(# of observations) numbers of evalutions is required
 - # of classes / # of hidden states: 6
 - # of observations: 3
 - 6³: number of evaluation is required.

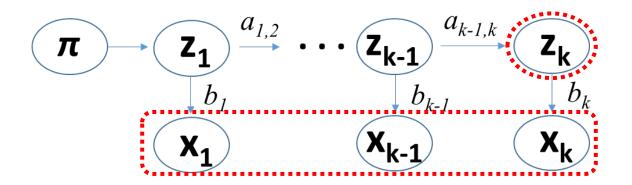




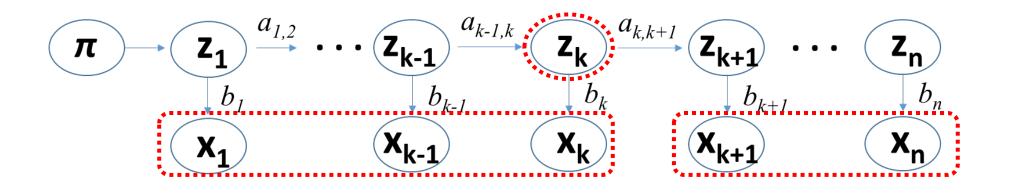
	Forward algorithm	Forward-Backward algorithm	Viterbi algorithm
Notation	$p(z_k x_{1:k})$	$p(z_k x_{1:n})$	$p(z_{1:n} x_{1:n})$



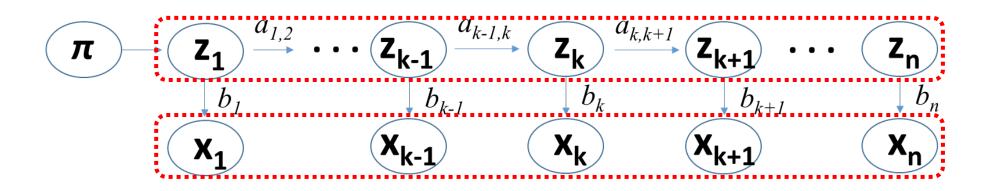
	Forward algorithm		Viterbi algorithm
Notation	p(z _k x _{1:k})	$p(z_k x_{1:n})$	$p(z_{1:n} x_{1:n})$



		Forward-Backward algorithm	Viterbi algorithm
Notation	$p(z_k x_{1:k})$	p(z _k x _{1:n})	p(z _{1:n} x _{1:n})



	Forward algorithm	Forward-Backward algorithm	Viterbi algorithm
Notation	$p(z_k x_{1:k})$	$p(z_k x_{1:n})$	p(z _{1:n} x _{1:n})



Prerequisite items you need to know before going further

- Marginalization

Marginalization

- Marginalization is a procedure to get rid of an influence of the other random variables from a joint distribution.
- A joint distribution, p(z, x), can be represented as p(x) or p(z) by marginalization out or over the variable z or x, respectively.
 - Marginal distribution of z, p(z) is the result of marginalization over x in p(z,x),
 - And vice versa.

	x ₁ (Smile)	x ₂ (Gloomy)	•••	x _n (Cry)	
z ₁ (Happy)	$p(z_1,x_1)$	$p(z_1,x_2)$	•••	$p(z_1,x_n)$	p(z ₁)
z ₂ (Sad)	p(z ₂ ,x ₁)	$p(z_2,x_2)$	•••	$p(z_2,x_n)$	p(z ₂)
	p(x ₁)	p(x ₂)	•••	p(x _n)	

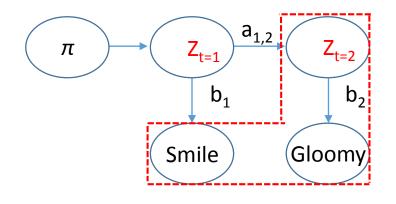
$$p(z) = \sum_{x} p(x, z)$$
• Marginal distribution of z

- Marginalization out x

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$$

- Marginal distribution of X
- Marginalization out z

Marginalization – cont.



	Z _{t=2} , X _{1:2}
z _{t=1} = Happy	$p(z_{t=1} = Happy_{j} z_{t=2}, x_{1:2})$
z _{t=1} = Sad	$p(z_{t=1} = Sad_{x_{t=2}, x_{1:2})$
	$p(z_{t=2}, x_{1:2})$

$$Z \in \{Happy, Sad\}$$

 $X \in \{Smile, Gloomy\}$

$$p(z_2, x_{1:2}) = \sum_{z_1} p(z_1, z_2, x_{1:2})$$
$$= p(z_1 = happy, z_2, x_{1:2}) + p(z_1 = sad, z_2, x_{1:2})$$

p(A,B,C) = p(A)p(B|A)p(C|A,B)

$$p(x, y) = p(x \mid y)p(y)$$

Product rule / Chain rule

$$p(A, B, C) = p(C, B \mid A)p(A)$$

$$= p(C \mid B, A) p(B \mid A) p(A)$$

$$p(A, B, C) = p(A) p(B \mid A) p(C \mid A, B)$$

$$p(C,B,A) = p(C,B|A)p(A)$$
$$p(C,B,A) = p(C|B,A)p(B,A)$$

$$p(C, B | A) p(A) = p(C | B, A) p(B, A)$$

$$p(C, B \mid A) = \frac{p(C \mid B, A)p(B, A)}{p(A)}$$

$$= p(C \mid B, A) p(B \mid A)$$

p(A,B,C|D) = p(A|D)p(B|A,D)p(C|A,B,D)

$$p(A, B, C, D) = p(C, B, A, D)$$

$$p(A, B, C | D) p(D) = p(C | B, A, D) p(B, A, D)$$

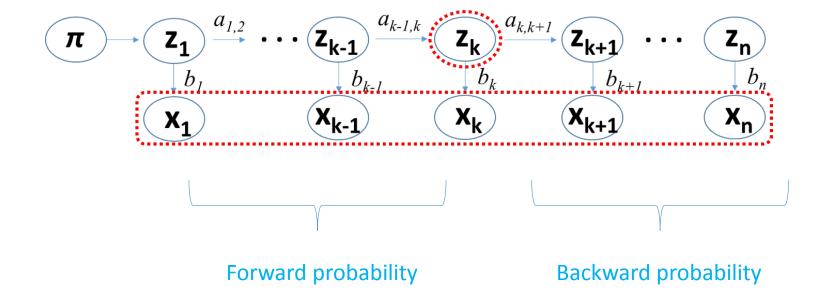
$$p(A, B, C | D) = \frac{p(C | B, A, D) p(B, A, D)}{p(D)}$$

$$= \frac{p(C | B, A, D) p(B | A, D) p(A, D)}{p(D)}$$

$$= \frac{p(C | B, A, D) p(B | A, D) p(A | D) p(D)}{p(D)}$$

$$p(A, B, C | D) = p(A | D) p(B | A, D) p(C | A, B, D)$$

Forward-Backward algorithm



1) Forward probability (α)

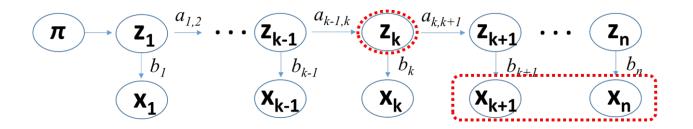
$$\begin{split} p(z_k, x_1, x_2, ..., x_k) = & \sum_{z_{k-1}} p(z_{k-1}, z_k, x_1, x_2, ..., x_k) & \text{marginalization} \\ = & \sum_{z_{k-1}} p(z_{k-1}, x_1, x_2, ..., x_{k-1}, z_k, x_1, x_2, ..., x_k) & \text{p(A,B,C)} = p(A)p(B|A)p(C|A,B) \end{split}$$

$$\alpha_{k}(z_{k}) = \sum_{z_{k-1}} p(z_{k-1}, x_{1}, x_{2}, ..., x_{k-1}) p(z_{k} | z_{k-1}, x_{1}, x_{2}, ..., x_{k-1}) p(x_{k} | z_{k}, z_{k-1}, x_{1}, x_{2}, ..., x_{k-1})$$

$$= \sum_{z_{k-1}} p(z_{k-1}, x_{1}, x_{2}, ..., x_{k-1}) p(z_{k} | z_{k-1}) p(x_{k} | z_{k})$$

$$\alpha_{k}(z_{k}) = \begin{pmatrix} \sum_{z_{k-1}} \alpha_{k-1}(z_{k-1}) & a_{k-1,k}b_{k} & k \ge 2 \\ \pi_{k} & b_{k} & k = 1 \end{pmatrix} \qquad p(z_{1}, x_{1}) = p(z_{1})p(x_{1} \mid z_{1}) = \pi_{1} b_{1}$$

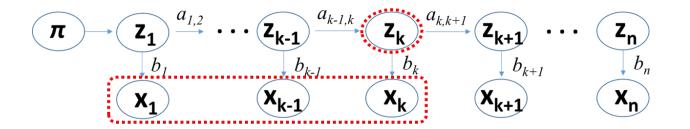
2) Backward probability (β)



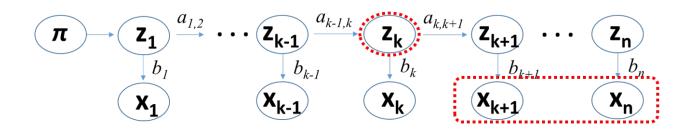
 $\beta_k(z_k) = \sum_{z_{k+1}} a_{k,k+1} b_{k+1} \beta_{k+1}(z_{k+1})$

$$\begin{split} p(x_{k+1}, \dots, x_n \mid z_k) &= \sum_{z_{k+1}} p(z_{k+1}, x_{k+1}, \dots, x_n \mid z_k) \quad \text{marginalization} \\ &= \sum_{z_{k+1}} p(z_{k+1}, x_{k+1}, x_{k+2}, x_{k+3}, \dots, x_n \mid z_k) \quad \underset{p(A|B,C|D) = p(A|B,D)}{\text{p}(A,B,C|D) = p(A|B,D)} \\ \beta_k(z_k) &= \sum_{z_{k+1}} p(z_{k+1} \mid z_k) p(x_{k+1} \mid z_{k+1}, z_k) p(x_{k+2}, \dots, x_n \mid x_{k+1}, z_{k+1}, z_k) \\ &= \sum_{z_{k+1}} p(z_{k+1} \mid z_k) p(x_{k+1} \mid z_{k+1}) p(x_{k+2}, \dots, x_n \mid z_{k+1}) \end{split}$$

Now we know probabilities of forward and backward



$$\alpha_k(z_k) = \begin{pmatrix} \sum_{z_{k-1}} \alpha_{k-1}(z_{k-1}) \ a_{k-1,k}b_k & k \ge 2 \\ \pi_k \ b_k & k = 1 \end{pmatrix}$$
 Forward probability α



$$\beta_k(z_k) = \sum_{z_{k+1}} a_{k,k+1} b_{k+1} \beta_{k+1}(z_{k+1})$$
 Backward probability β

Back to Forward-Backward algorithm – cont.

$$p(z_{k}, x_{1:n}) = p(z_{k}, x_{1}, x_{2}, ..., x_{k}, x_{k+1}, ..., x_{n})$$

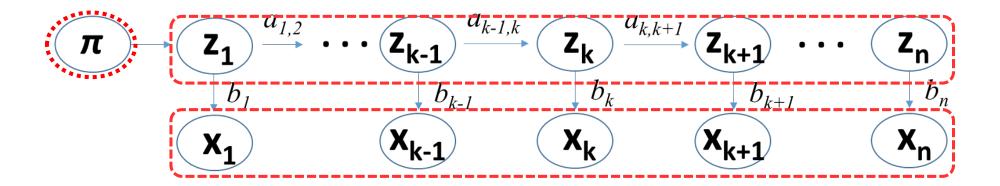
$$= p(z_{k}, x_{1}, x_{2}, ..., x_{k}) \ p(x_{k+1}, ..., x_{n} \mid z_{k})$$
1) Forward probability 2) Backward probability

$$\alpha_{k}(z_{k}) = \begin{pmatrix} \sum_{z_{k-1}} \alpha_{k-1}(z_{k-1}) & a_{k-1,k}b_{k} & k \ge 2 \\ \pi_{k} & b_{k} & k = 1 \end{pmatrix} \qquad \beta_{k}(z_{k}) = \sum_{z_{k+1}} a_{k,k+1}b_{k+1}\beta_{k+1}(z_{k+1})$$

$$\beta_k(z_k) = \sum_{z_{k+1}} a_{k,k+1} b_{k+1} \beta_{k+1}(z_{k+1})$$

Viterbi Decoding

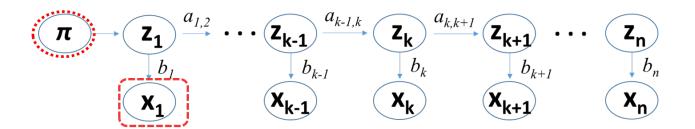
 \Box It is an algorithm which determines the label sequences($z_{1:n}$) from observed data.



Viterbi Decoding – cont.

$$\begin{array}{l} (\pi) - (z_1)^{a_{l,2}} \cdots (z_{k-1})^{a_{k-l,k}} (z_k)^{a_{k+l}} (z_{k+1}) \cdots (z_n) \\ y_{l,n} = \arg\max_{z_{1:n}} p(z_{1:n} \mid x_{1:n}) = \arg\max_{z_{1:n}} p(z_{1:n}, x_{1:n}) \\ = \max_{z_{1:k-1}} p(z_{1:k}, x_{1:k}) = \max_{z_{1:k-1}} p(z_{1}, \dots, z_{k-1}, x_{1}, \dots, x_{k-1}, z_{k}, x_{k}) \\ = \max_{z_{1:k-1}} p(z_{k}, x_{k} \mid z_{1}, \dots, z_{k-1}, x_{1}, \dots, x_{k-1}, z_{k}, x_{k}) \\ = \max_{z_{1:k-1}} p(z_{k}, x_{k} \mid z_{1}, \dots, z_{k-1}, x_{1}, \dots, x_{k-1}) p(z_{1}, \dots, z_{k-1}, x_{1}, \dots, x_{k-1}) \\ = \max_{z_{1:k-1}} p(z_{k}, x_{k} \mid z_{k-1}) p(z_{1}, \dots, z_{k-1}, x_{1}, \dots, x_{k-1}) \\ = \max_{z_{k+1}} p(z_{k}, x_{k} \mid z_{k-1}) p(z_{1}, \dots, z_{k-1}, x_{1}, \dots, x_{k-1}) \\ = \max_{z_{k+1}} p(z_{k}, x_{k} \mid z_{k-1}) \max_{z_{1:k-2}} p(z_{1}, \dots, z_{k-1}, x_{1}, \dots, x_{k-1}) \\ = \max_{z_{k+1}} p(z_{k}, x_{k} \mid z_{k-1}) V_{k-1}(z_{k-1}) \\ = \max_{z_{k+1}} p(z_{k}, x_{k} \mid z_{k-1}) V_{k-1}(z_{k-1}) \\ = \max_{z_{k+1}} p(z_{k}, x_{k} \mid z_{k-1}) V_{k-1}(z_{k-1}) \\ = \max_{z_{k+1}} p(z_{k} \mid z_{k}, z_{k-1}) p(z_{k} \mid z_{k-1}) V_{k-1}(z_{k-1}) \\ = \max_{z_{k+1}} p(z_{k} \mid z_{k}, z_{k-1}) V_{k-1}(z_{k-1}) \\ = \min_{z_{k+1}} p(z_{k} \mid z_{k}, z_{k-1}) V_{k-1}(z_{k-1}) \\ = \min_{z_{k+1}} p(z_{k} \mid z_{k}, z_{k-1}) V_{k-1}(z_{k-1}) \\ = \min_{z_{k+1}} p(z_{k} \mid z_{k}, z_{k}) \\ = \min_{z_{k+1}} p(z_{k} \mid z_{k}, z_{k-1}) V_{k-1}(z_{k-1}) \\ = \min_{z_{k+1}} p(z_{k} \mid z_{k}, z_{k-1}) V_{k-1}(z_{k-1}) \\ = \min_{z_{k+1}} p(z_{k} \mid z_{k}, z_{k-1}) V_{k-1}(z_{k-1}) \\ = \min_{z_{k+1}} p(z_{k} \mid z_{k}, z_{k}) \\ = \min_{z_{k+1}} p(z_{k} \mid$$

Viterbi Decoding – cont.



☐ Initialize

$$V_1(z_1) = b_1 \max_{z_0} a_{0,1} V_0(z_0) = b_1 \pi_1$$

 \square Iterate until time k \rightarrow n

$$V_{k}(z_{k}) = b_{k} \max_{z_{k-1}} a_{k-1,k} V_{k-1}(z_{k-1})$$

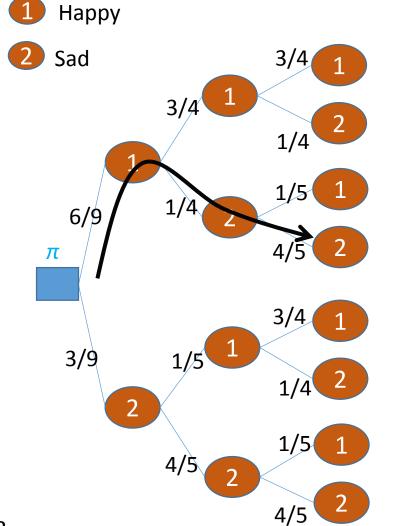
Select a link which maximizes the connection from Z_(k-1) to Z_k. See the example in the next slide.

From above, we are interested in the series of " $z_{1:n}$ ", which maximizes $V_k(z_k)$.

$$z_{1:n}^* = \arg \max_{z_{1:n}} p(z_{1:n} \mid x_{1:n}) = \arg \max_{z_{1:n}} p(z_{1:n}, x_{1:n})$$

Decoding examples with Viterbi algorithm

☐ What is the sequence of hidden states which generates "Smile – Gloomy – Gloomy"?



• π : initial

Нарру	Sad
6/9	3/9

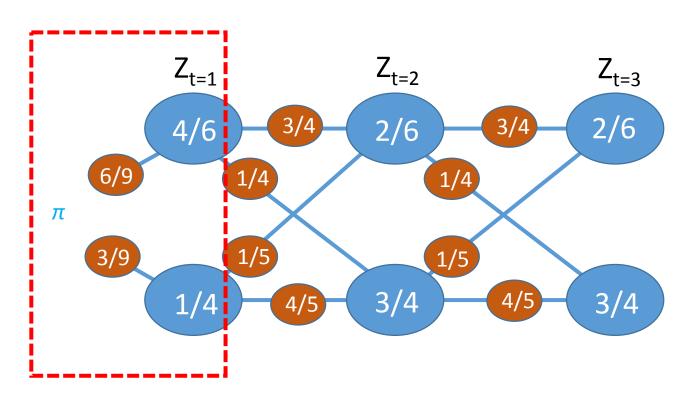
• *a* : transition

	Нарру	Sad
Нарру	3/4	1/4
Sad	1/5	4/5

■ *b* : emission

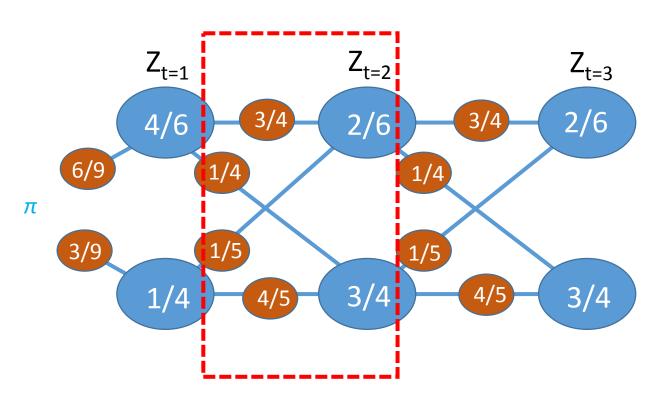
Нарру		Sad	
Smile	Gloomy	Smile	Gloomy
4/6	2/6	1/4	3/4

Cases	Probability $(\pi \times b \times a \times b \times a \times b)$	
p(H-H-H X, π, a, b)	6/9 x 4/6 x 3/4 x 2/6 x 3/4 x 2/6	0.02778
p(H-H-S X, π, a, b)	6/9 x 4/6 x 3/4 x 2/6 x 1/4 x 3/4	0.02083
p(H-S-H X, π, a, b)	6/9 x 4/6 x 1/4 x 3/4 x 1/5 x 2/6	0.00556
p(H-S-S X, π, a, b)	6/9 x 4/6 x 1/4 x 3/4 x 4/5 x 3/4	0.05000
p(<mark>S-S-H</mark> X, π, a, b)	3/9 x 1/4 x 4/5 x 3/4 x 1/5 x 2/6	0.00335
p(S-H-S X, π, a, b)	3/9 x 1/4 x 1/5 x 2/6 x 1/4 x 3/4	0.0009
p(S-H-H X, π, a, b)	3/9 x 1/4 x 1/5 x2/6 x 3/4 x 2/6	0.0014
p(<mark>S-S-S</mark> X, π, a, b)	3/9 x 1/4 x 4/5 x 3/4 x4/5 x 3/4	0.03



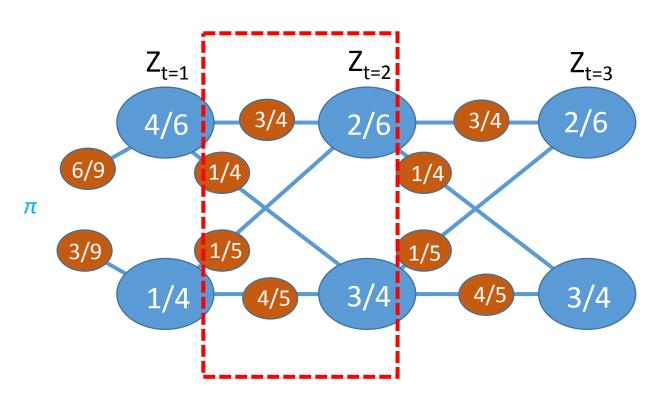
$$V_1(z_1) = b_1 \max_{z_0} a_{0,1} V_0(z_0) = b_1 \pi_1$$

	V(Z1)	V(Z2)	V(Z3)
Нарру	6/9 x 4/6 = 0.444		
Sad	3/9 x 1/4 = 0.083		



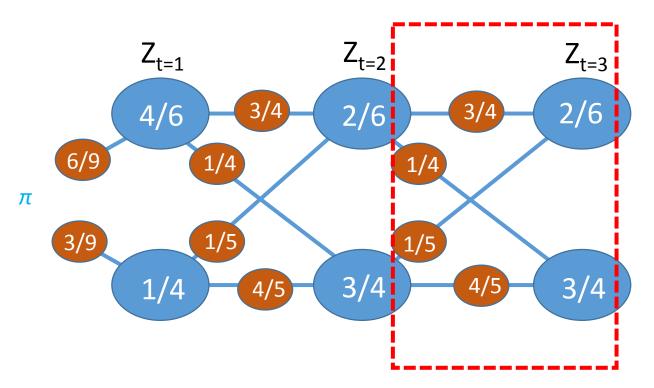
$$V_2(z_2) = b_2 \max_{z_1} a_{1,2} V_1(z_1)$$

	V(Z1)	V(Z2)	V(Z3)
Нарру	6/9 x 4/6 = 0.444	3/4 x 2/6 x v(z1-happy) = 0.111 1/5 x 2/6 x v(z1-sad) = 0.00553	
Sad	3/9 x 1/4 = 0.083	1/4 x 3/4 x v(z1-happy) = 0.0833 4/5 x 3/4 x v(z1-sad) = 0.0498	



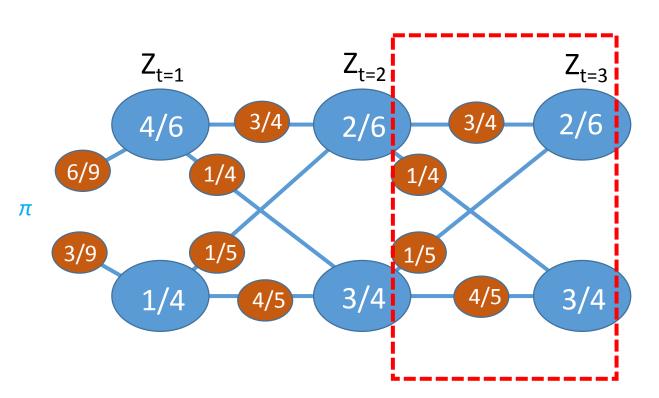
$$V_2(z_2) = b_2 \max_{z_1} a_{1,2} V_1(z_1)$$

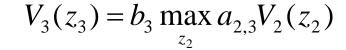
	V(Z1)	V(Z2)	V(Z3)
Нарру	6/9 x 4/6 = 0.444	$3/4 \times 2/6 \times v(z1-happy) = 0.111$ $1/5 \times 2/6 \times v(z1-sad) = 0.00553$	
Sad	3/9 x 1/4 = 0.083	$1/4 \times 3/4 \times v(z1-happy) = 0.0833$ $4/5 \times 3/4 \times v(z1-sad) = 0.0498$	

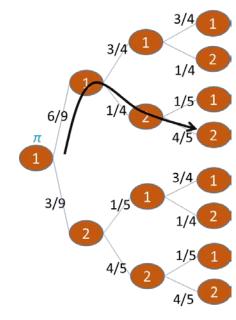


$$V_3(z_3) = b_3 \max_{z_2} a_{2,3} V_2(z_2)$$

	V(Z1)	V(Z2)	V(Z3)
Нарру	6/9 x 4/6 = 0.444	$3/4 \times 2/6 \times v(z1-happy) = 0.111$ $1/5 \times 2/6 \times v(z1-sad) = 0.00553$	3/4 x 2/6 x v(z2-happy) = 0.0278 1/5 x 2/6 x v(z2-sad) = 0.00556
Sad	3/9 x 1/4 = 0.083	$1/4 \times 3/4 \times v(z1-happy) = 0.0833$ $4/5 \times 3/4 \times v(z1-sad) = 0.0498$	1/4 x 3/4 x v(z2-happy) = 0.0208 4/5 x 3/4 x v(z2-sad)= 0.04998







	V(Z1)	V(Z2)	V(Z3)
Нарру	6/9 x 4/6 = 0.444	$3/4 \times 2/6 \times v(z1-happy) = 0.111$ $1/5 \times 2/6 \times v(z1-sad) = 0.00553$	$3/4 \times 2/6 \times v(z2-happy) = 0.0278$ $1/5 \times 2/6 \times v(z2-sad) = 0.00556$
Sad	3/9 x 1/4 = 0.083	$1/4 \times 3/4 \times v(z1-happy) = 0.0833$ $4/5 \times 3/4 \times v(z1-sad) = 0.0498$	$\frac{1/4 \times 3/4 \times v(z2-happy) = 0.0208}{4/5 \times 3/4 \times v(z2-sad) = 0.04998}$

SAD

SAD

Learning Problem with Baum-Welch algorithm

Prerequisite items you need to know before tackling Baum-Welch algorithm

- ☐ Lagrange method
- Jensen's inequality
- ☐ Generalized Expectation and Maximization (EM)

Lagrange method

☐ A method which converts a constrained optimization problem to a non-constrained optimization problem.

min
$$f(x, y) = x^2 + y^2$$

s.t $x + y = 100$

min
$$f(x, y, \lambda) = x^2 + y^2 + \lambda(x + y - 100)$$

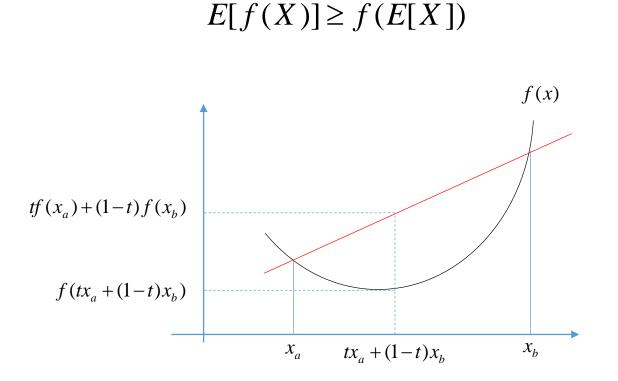
$$\frac{\partial f(x, y, \lambda)}{\partial x} = 0$$

$$\frac{\partial f(x, y, \lambda)}{\partial y} = 0$$

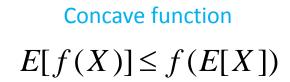
$$\frac{\partial f(x, y, \lambda)}{\partial \lambda} = 0$$

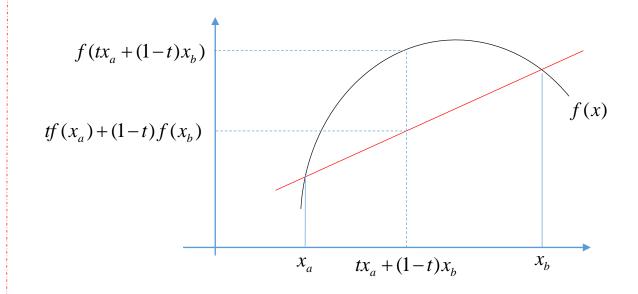
Jensen's inequality

☐ When a function is convex or concave, the following inequality condition is satisfied.



Convex function





Generalized EM method

☐ Log likelihood function?

$$\{\pi, a, b\} \in \theta$$

$$\ln p(X \mid \theta) = \ln \sum_{Z} p(X, Z \mid \theta) \qquad \text{Marginalize over Z}$$

$$= \ln \sum_{Z} q(Z) \frac{p(X, Z \mid \theta)}{q(Z)} \qquad E[X] = \sum_{Z} xp(x)$$

$$= \ln E_{Z} \left[\frac{p(X, Z \mid \theta)}{q(Z)} \right] \qquad \text{Jensen's inequality (a log function is concave)}$$

$$E[X] = \sum_{Z} xp(x)$$

Generalized EM method – cont.

$$\ln p(X \mid \theta) \ge \sum_{Z} q(Z) \ln p(X, Z \mid \theta) - \sum_{Z} q(Z) \ln q(Z)$$

$$\ge \sum_{Z} q(Z) \ln p(Z \mid X, \theta) p(X \mid \theta) - \sum_{Z} q(Z) \ln q(Z)$$

$$\ge \sum_{Z} q(Z) \ln \frac{p(Z \mid X, \theta) p(X \mid \theta)}{q(Z)}$$

$$\ge \sum_{Z} q(Z) \ln \frac{p(Z \mid X, \theta)}{q(Z)} + \sum_{Z} q(Z) \ln p(X \mid \theta)$$

$$\ge \sum_{Z} q(Z) \ln \frac{p(Z \mid X, \theta)}{q(Z)} + \ln p(X \mid \theta)$$

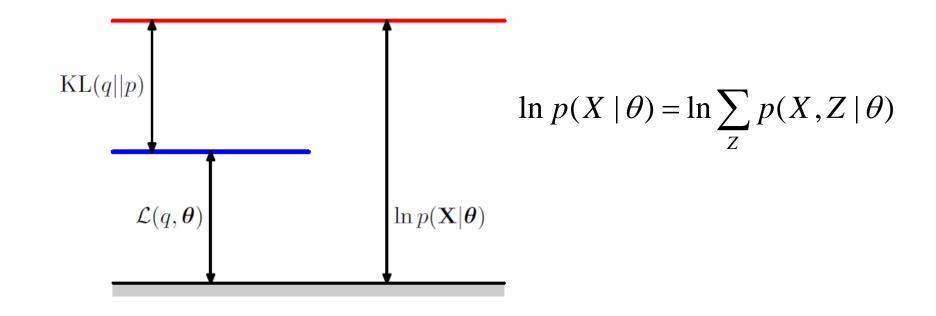
$$\ge \ln p(X \mid \theta) - \sum_{Z} q(Z) \ln \frac{q(Z)}{p(Z \mid X, \theta)}$$

Product rule
p(A,B|C) = p(A|C)p(B|A,C)

Generalized EM method – cont.

$$L(q,\theta) \ge \ln p(X \mid \theta) - \sum_{Z} q(Z) \ln \frac{q(Z)}{p(Z \mid X, \theta)}$$

- \square Kullback-Leiber divergence, or KL divergence: KL (q(z)||p(z|z, θ))
- \Box When q(z) is equal to $p(Z|X,\theta)$, KL divergence becomes 0 which is the minimum value (KL ≥ 0).



Learning problem: Baum-Welch algorithm

- □ Same as other machine learning algorithms, the learning problem is to find parameters of a model (HMM) which explains the observed data set X.
 - $p(X | \pi, a, b)$
 - 1) π (initial state probability), 2) a (transition probability), 3) b (emission probability)
- We have two sets of unknown variables:
 - 1) Hidden variable z which is a sequence of classes/clusters,
 - 2) Its relevant parameters: (π, a, b)
- ☐ Same as GMM case, the log-likelihood function of HMM cannot be solved analytically
- ☐ We need to apply Expectation and Maximization method, which is called Baum-Welch algorithm in HMM.

Learning problem: Baum-Welch algorithm: Expectation step

- \square Expect the sequence of hidden variable " \mathbb{Z}_n " given X, π , a, b
 - $p(Z|X, \pi, a, b)$
 - The three parameters of HMM is from M-step (or randomly initialized in the first iteration).
 - 1) π (initial state probability), 2) a (transition probability), 3) b (emission probability)

Learning problem: Baum-Welch algorithm: Maximization step

Maximize the log likelihood function to find the parameters of HMM given the sequence of hidden variables "z_n" and observation "X"

$$\max_{\theta} \sum_{Z} q(Z) \ln p(X, Z \mid \theta)$$

$$\ln p(X \mid \theta) \ge \sum_{Z} q(Z) \ln p(X, Z \mid \theta) - \sum_{Z} q(Z) \ln q(Z)$$

$$\max_{\pi,a,b} \sum_{z} p(z \mid x, \pi, a, b) \ln \left(\pi \prod_{k=2}^{n} a_{k-1,k} \prod_{k=1}^{n} b_{k} \right)$$

$$\max_{\pi,a,b} \sum_{Z} p(z \mid x, \pi, a, b) \ln \left(\pi \prod_{k=2}^{n} a_{k-1,k} \prod_{k=1}^{n} b_{k} \right) \qquad \ln p(X \mid \theta) \ge \ln p(X \mid \theta) - \sum_{Z} q(Z) \ln \frac{q(Z)}{p(Z \mid X, \theta)}$$

$$\max_{\pi,a,b} \sum_{Z} p(z \mid x, \pi, a, b) \left(\ln \pi + \sum_{k=2}^{n} \ln a_{k-1,k} + \sum_{k=1}^{n} \ln b_{k} \right)$$

Optimization problem using Lagrange method

$$\sum_{i=1}^{m} \pi_i = 1, \quad \sum_{i=1}^{n} a_{i,i+1} = 1, \quad \sum_{i=1}^{n} b_i = 1$$

s.t.

Learning problem: Baum-Welch algorithm: Maximization step

$$\pi^{(t+1)} = \frac{p(z_1^i = 1 | X, \pi_t, a_t, b_t)}{\sum_{j=1}^K p(z_1^j = 1 | X, \pi_t, a_t, b_t)}$$

Evaluation problem

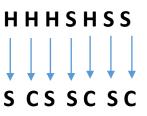
	Н	S
Η	2/4	2/4
S	1/3	1/3

$$a_{(i,j)}^{(t+1)} = \frac{\sum_{t=2}^{T} p(z_{t-1}^{i} = 1, z_{t}^{j} = 1 \mid X, \pi_{t}, a_{t}, b_{t})}{\sum_{t=2}^{T} p(z_{t-1}^{i} = 1 \mid X, \pi_{t}, a_{t}, b_{t})}$$

- Numerator
 - Count transits from one hidden variable to the other
- Denominator
 - Count the hidden variable: see example above

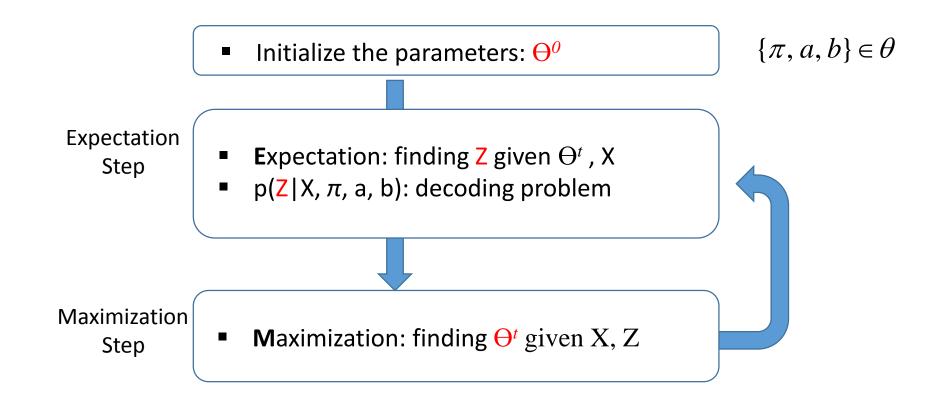
$$b_{(i,j)}^{(t+1)} = \frac{\sum_{t=1}^{T} p(z_t^i = 1 | X, \pi_t, a_t, b_t) \delta(idx(x_t) = j)}{\sum_{t=1}^{T} p(z_t^i = 1 | X, \pi_t, a_t, b_t)}$$

- Numerator
 - Count occurrence of the random variable (x) in which you are interested from a particular hidden variable.
- Denominator
 - Count the hidden variable appeared.



Нар	ру	Sad	
Smile	Cry	Smile	Cry
2/4	2/4	2/3	1/3

Learning problem: Baum-Welch algorithm



- ☐ The process is repeated until the three parameters of HMM do not change much.
 - 1) π , 2) a (transition probability), 3) b (emission probability)

Backup slide

Decoding example with Viterbi algorithm – (2)

• π : initial

Нарру	Sad
6/9	3/9

• *a*: transition

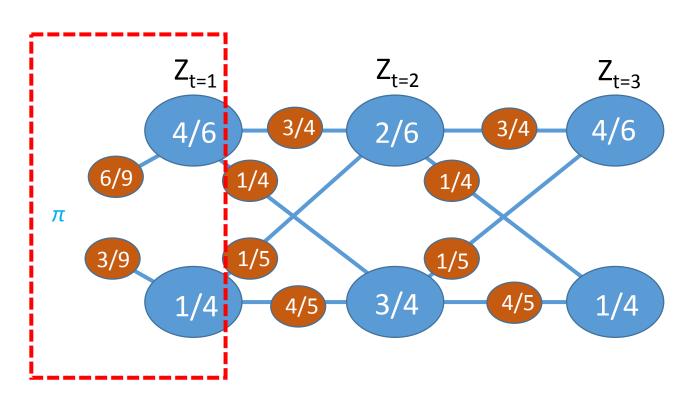
	Нарру	Sad
Нарру	3/4	1/4
Sad	1/5	4/5

• *b* : emission

Нарру		Sad	
Smile	Cry	Smile	Cry
4/6	2/6	1/4	3/4

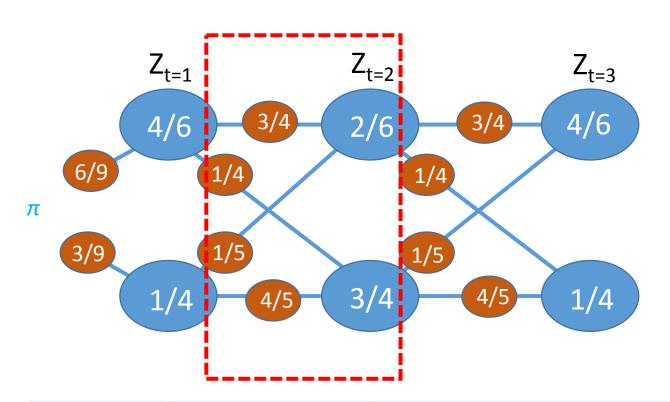
		3/4 1
	3/4 1	1/4 2
6/9	1/4 2	1/5 1
π		4/5 2
		3/4 1
3/9	1/5 1	1/4 2
	4/5	1/5 1
	4/3 2	4/5 2

Cases	Probability $(\pi \times b \times a \times b \times a \times b)$	
p(H-H-H X, π, a, b)	6/9 x 4/6 x 3/4 x 2/6 x 3/4 x 4/6	0.0556
p(H-H-S X, π, a, b)	6/9 x 4/6 x 3/4 x 2/6 x 1/4 x 1/4	0.0046
p(H-S-H X, π, a, b)	6/9 x 4/6 x 1/4 x 3/4 x 1/5 x 4/6	0.0111
p(H-S-S X, π, a, b)	6/9 x 4/6 x 1/4 x 3/4 x 4/5 x 1/4	0.0167
p(S-S-H X, π, a, b)	3/9 x 1/4 x 4/5 x 3/4 x 1/5 x 4/6	0.0067
p(<mark>S-H-S</mark> X, π, a, b)	3/9 x 1/4 x 1/5 x 2/6 x 1/4 x 1/4	0.0003
p(S-H-H X, π, a, b)	3/9 x 1/4 x 1/5 x2/6 x 3/4 x 4/6	0.0028
p(S-S-S X, π, a, b)	3/9 x 1/4 x 4/5 x 3/4 x4/5 x 1/4	0.01



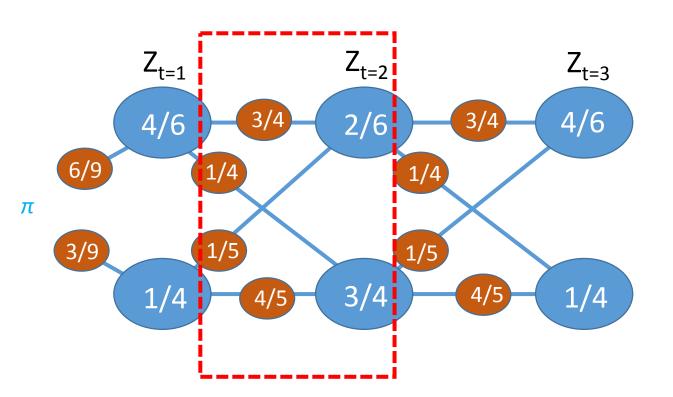
$$V_1(z_1) = b_1 \max_{z_0} a_{0,1} V_0(z_0) = b_1 \pi_1$$

	V(Z1)	V(Z2)	V(Z3)
Нарру	6/9 x 4/6 = 0.444		
Sad	3/9 x 1/4 = 0.083		



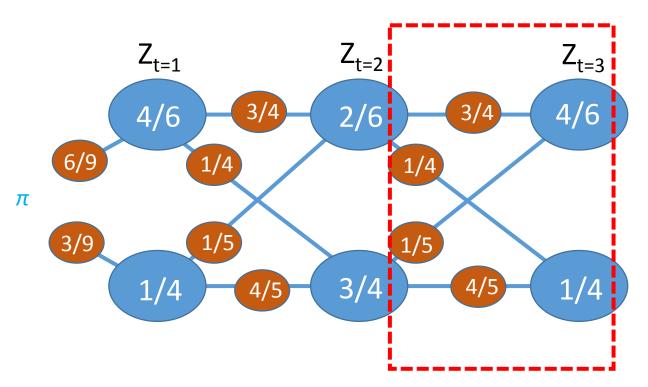
$$V_2(z_2) = b_2 \max_{z_1} a_{1,2} V_1(z_1)$$

	V(Z1)	V(Z2)	V(Z3)
Нарру	6/9 x 4/6 = 0.444	3/4 x 2/6 x v(z1-happy) = 0.111 1/5 x 2/6 x v(z1-sad) = 0.00553	
Sad	3/9 x 1/4 = 0.083	1/4 x 3/4 x v(z1-happy) = 0.0833 4/5 x 3/4 x v(z1-sad) = 0.0498	



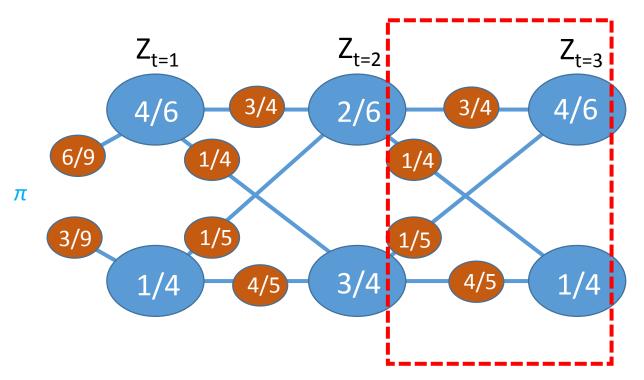
$$V_2(z_2) = b_2 \max_{z_1} a_{1,2} V_1(z_1)$$

	V(Z1)	V(Z2)	V(Z3)
Нарру	6/9 x 4/6 = 0.444	$3/4 \times 2/6 \times v(z1-happy) = 0.111$ $1/5 \times 2/6 \times v(z1-sad) = 0.00553$	
Sad	3/9 x 1/4 = 0.083	$1/4 \times 3/4 \times v(z1-happy) = 0.0833$ $4/5 \times 3/4 \times v(z1-sad) = 0.0498$	



$$V_3(z_3) = b_3 \max_{z_2} a_{2,3} V_2(z_2)$$

	V(Z1)	V(Z2)	V(Z3)
Нарру	6/9 x 4/6 = 0.444	$3/4 \times 2/6 \times v(z1-happy) = 0.111$ $1/5 \times 2/6 \times v(z1-sad) = 0.00553$	$3/4 \times 4/6 \times v(z2-happy) = 0.0555$ 1/5 x 4/6 x v(z2-sad) = 0.0111
Sad	3/9 x 1/4 = 0.083	$1/4 \times 3/4 \times v(z1-happy) = 0.0833$ $4/5 \times 3/4 \times v(z1-sad) = 0.0498$	1/4 x 1/4 x v(z2-happy) = 0.0069 4/5 x 1/4 x v(z2-sad)= 0.01666



$$V_3(z_3) = b_3 \max_{z_2} a_{2,3} V_2(z_2)$$

	V(Z1)	V(Z2)	V(Z3)
Нарру	6/9 x 4/6 = 0.444	$3/4 \times 2/6 \times v(z1-happy) = 0.111$ $1/5 \times 2/6 \times v(z1-sad) = 0.00553$	$3/4 \times 4/6 \times v(z2-happy) = 0.0555$ $1/5 \times 4/6 \times v(z2-sad) = 0.0111$
Sad	3/9 x 1/4 = 0.083	$1/4 \times 3/4 \times v(z1-happy) = 0.0833$ $4/5 \times 3/4 \times v(z1-sad) = 0.0498$	1/4 x 1/4 x v(z2-happy) = 0.0069 4/5 x 1/4 x v(z2-sad)= 0.01666