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Practical Machine Learning

Dr. Suyong Eum

Lecture 3
K-means model and Gaussian Mixture Model (GMM)
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A question from the last class
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Where we are

Reinforcement 
Learning

Supervised 
Learning

Unsupervised 
Learning

 LCR (week2)
 SVM (week5)
 CNN (week8)
 RNN (week10)

 GMM (week3)
 HMM (week4)
 PCA (week6)
 VAE (week12)
 GAN (week12)

 DQN (week14)
 PG (week14)
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Unsupervised learning: clustering

 Clustering is the most fundamental learning mechanism.
 What makes you think the below is a dog not a panda?
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Lecture Outline

 K-means model
 Gaussian Mixture Model (GMM)
 Expectation and Maximization (EM) for GMM
 An example of EM operation
 Graphical representation of GMM
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K-means clustering

K-means model
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K-means model

 Problem of identifying clusters of data points by minimizing the function J
 Clustering the data points into K clusters: “assuming that K is known”
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• N: the number of observed data points
• K: the number of clusters
• xn: nth data point
• μk: kth centroid corresponding to each cluster
• rnk: {0, 1} showing whether a data point      

belongs to “k cluster” or not μ1
μ2

μ3
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Number of data points 
in cluster k

Summation of x values 
in cluster k

:kµ Mean of the data points xk
in cluster k

K-means model: which value the centroid should be?

 To minimize the error function J, which value the centroid should be?
 If J has 1L norm, then?
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Finding a centroid for 
each cluster

Expect which data 
points are close to 

each centroid

rnk
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Random choice 
of centroids

K-means clustering: how to optimize the equation?
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Problems of K means: outlier or unevenly sized clusters

Desirable 
clustering

Undesirable 
clustering

outlier
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Problems of K means: Initialization issue

 Depending on the initialization, clustering results can be changed 
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Problems of K means: Non-spherical data issue

 K means algorithm assumes that clustered data set has a shape of sphere.

http://varianceexplained.org/r/kmeans-free-lunch/
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 Image segmentation and compression

An application of K-means algorithm

R

G

B

μ1

μ2

8 bits

 Original: 24 bits per pixel
 K clustering: Log2 K bits per pixel
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K-means clustering

Gaussian Mixture Model (GMM)
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 Likelihood function
 Maximum likelihood estimation
 Multivariate Gaussian distribution

Prerequisite items you need to know before GMM  
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Likelihood function

 A likelihood function is a probability mass or density function having parameter(s).
 We often take log both sides of the likelihood function and call it log-likelihood function.
 Given a set of data, the parameter(s) of the probability model is estimated by maximizing 

the log-likelihood function, which is called a maximum likelihood estimation. 
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Maximum likelihood estimation

 Maximum likelihood estimation is a procedure that finds the parameter(s) of the probability 
model by maximizing the (log)-likelihood function.

 Some cases are easy to obtain an analytical solution. However, some cases are not.
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Multivariate Gaussian distribution

 A generalization of one-dimensional Gaussian distribution to higher dimensions
 Two parameters: mean (μ) and covariance (∑)
 Notation: N(μ,∑)

single variable Gaussian

2-variables Gaussian
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 A probability model that multivariate Gaussian distributions are mixed 
or linearly superposed.

Gaussian Mixture Models (GMM)
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 πk : mixing coefficient - probability that kth

multivariate Gaussian being selected
 μk  : mean of kth multivariate Gaussian
 ∑k : covariance of kth multivariate Gaussian
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Gaussian Mixture Models (GMM): a hidden or a latent variable

 GMM has a hidden or a latent variable in the model.
 It is denoted as “z”, which has K-dimensional binary random variable having 1-of-K representation.
 The latent variable shows which cluster is active, which is governed by the mixing coefficient πk

),...,,(z 21 kzzz= }1,0{∈kz

kkzp π== )1( Probability that           
kth Gaussian is active.

z=(z1, z2, z3)=(1,0,0)
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Gaussian Mixture Models (GMM): how to find all parameters of GMM?

 We can find all parameters of GMM using maximum likelihood estimation
 Log-likelihood function of GMM is given as follows:
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 There is not any analytical solution for this maximization problem. So,
- Neural network approach: using the negative log likelihood function as an error function
- Expectation Maximization (EM) approach
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Expectation and Maximization (EM) for GMM
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 Different from K-means algorithm, GMM model tells the probabilities that a given data point 
belongs to individual classes.
- The probability is called “responsibility”, which is denoted “γ(zk)”
- The probability is also called “posterior”, which is denoted “p(zk=1|x)”

Gaussian Mixture Models (GMM): responsibility γ(zk)
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 Well, this part normally involves slightly(?) heavy mathematical derivation.
 An idea is that you can find the parameters 1) πk , 2) μk, 3) ∑k when responsibility γ(zk) is given.
 And vice versa !

Gaussian Mixture Models (GMM): three parameters of GMM model
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 Three parameters of GMM model is from M-step (or randomly initialized in the first iteration).
- 1) πk , 2) μk, 3) ∑k 

 Expect the responsibility “γ(zk)”

Gaussian Mixture Models (GMM): E-step
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 The responsibility “γ(zk)” is from E-step.
 Three parameters of GMM model is calculated using the equations below:

Gaussian Mixture Models (GMM): M-step
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ME

Iteration = 2 Iteration = 5 Iteration = 20

1) πk , 
2) μk, 
3) ∑k

Initial 
random 

setup

Gaussian Mixture Models (GMM): operation
Responsibility 
Expectation

Three parameters 
calculation
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K-means GMM
 Hard clustering: {Yes or No }  Soft clustering: {Probability}
 Centroid (μk )  Mean and Covariance (μk , ∑k)
 rnk: {0,1}  Mixing coefficient (πk ): probability
 Reducing the distance  Maximizing log likelihood function
 Simple and Fast  Complex and Slow

 Therefore, common to run the K-means algorithm in order to find a suitable 
initialization for a Gaussian mixture model that is subsequently adapted using EM.

 “K” needs to be decided.

Gaussian Mixture Models (GMM) vs K-means
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An example of EM operation
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 Your task is to find out a group of people over 70 who has high risks of cancer.
 Your initial belief is that

- 70% of cancer patients are a smoker.
- 30% of non-cancer patients are a smoker.

 Then, a survey is carried out to five groups of people as follows:

EM algorithm: an example – smoking and cancer

smoker Non-smoker

Group1 6 4

Group2 7 3

Group3 5 5

Group4 9 1

Group5 8 2
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 Initially, the model parameter is guessed (your belief) as follows:
- Cancer patient: p(smoker) = 0.7
- Non-cancer patient: p(smoker) = 0.3

 Calculate the probability from each class (cancer and non-cancer)
- The class is modelled using Binomial distribution.

 Expect the posterior: p(cancer|smoker)
- Responsibility of each class based on the given model parameter and data

EM algorithm: an example: E-step

Cancer Non-cancer Cancer Non-cancer

G1 C(10,6)(0.7)6(1-0.7)4=0.200 C(10,6)(0.3)6(1-0.3)4=0.037 0.844 0.156

G2 C(10,7)(0.7)7(1-0.7)3=0.267 C(10,7)(0.3)7(1-0.3)3=0.009 0.967 0.033

G3 C(10,5)(0.7)5(1-0.7)5=0.103 C(10,5)(0.3)5(1-0.3)5=0.103 0.5 0.5

G4 C(10,9)(0.7)9(1-0.7)1=0.121 C(10,9)(0.3)9(1-0.3)1= 0.00013 0.998 0.002

G5 C(10,8)(0.7)8(1-0.7)2=0.233 C(10,8)(0.3)8(1-0.3)2=0.00145 0.993 0.007

1535

non_cancercancer
cancer
+ non_cancercancer

non_cancer
+

Probability that {6,7,5,9,8} 
out of 10 are a smoker

when they are cancer patients

Posterior showing how much 
responsible each class has for data setProbability that {6,7,5,9,8}            

out of 10 are a smoker
when they are non-cancer patients
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 Posteriors: p(cancer|smoker) and p(non-cancer|smoker) are given 
from E-Step 

 The parameter of the Binomial distribution is calculated to maximize 
its likelihood function.

EM algorithm: an example: M-step

Cancer Non-cancer

Smoker Non-smoker Smoker Non-smoker

G1 6 x 0.844 =5.069 4 x 0.844 =3.379 6 x 0.156 = 0.931 4 x 0.156 = 0.621

G2 7 x 0.967 = 6.772 3 x 0.967 = 2.902 7 x 0.033 = 0.228 3 x 0.033 = 0.098

G3 5 x 0.5 = 2.500 5 x 0.5 = 2.500 5 x 0.5 = 2.500 5 x 0.5 = 2.500

G4 9 x 0.998 = 8.990 1 x 0.998 = 0.999 9 x 0.002 = 0.010 1 x 0.002 = 0.001

G5 8 x 0.993 = 7.951 2 x 0.993 = 1.988 8 x 0.007 = 0.049 2 x 0.007 = 0.012

31.28 11.77 3.72 3.23

p(smoker)=31.28/(31.28+11.77)=0.73 p(smoker)=3.72/(3.72+3.23)=0.54

 Comparing to the previous values: Cancer patient, p(smoker)=0.7, Non-cancer patient, p(smoker)=0.3
 If the values do not change much, go to E-step. Otherwise, stop.

1535
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Graphical representation of a GMM
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Graphical representation of a GMM

 Probability showing the 
weight of each multivariate 
Gaussian model

 Select one multivariate Gaussian distribution using π
 From the selected multivariate Gaussian distribution with μ

and ∑ , generate a sample
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Multivariate 
Gaussian 

distribution

 Mean of each multivariate 
Gaussian model

 Covariance of each multivariate 
Gaussian model

 K-dimensional binary random variable 
having 1-of-K representation

 Basically, tell you which multivariate 
Gaussian model is active.

 It is governed by π
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