Practical Machine Learning

Lecture 2
Linear models for classification and regression

Dr. Suyong Eum

CP OSAKA UNIVERSITY



Lecture Outline

O Linear classification
- Perceptron algorithm
d Linear regression
- Mean Square Error (MSE)
- Normal Equation
- Gradient descent
1 Logistic regression
- Cross Entropy Error (CEE)



Classification



Terminology

d Decision boundary (surfaces)
d Decision regions
d (D-1)-dimensional hyperplane within the D-dimensional input space
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Two main approaches for classification

1) Probabilistic approach
- Focus on the development of a probability model, e.g., cancer/non-cancer

2) Deterministic approach

- Focus on the determination of a decision boundary
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Christopher M. Bishop Pattern Recognition and Machine Learning, 2001



Perceptron neural network: history

Frank Rosenblatt
1928—-1969

Rosenblatt’s perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an IBM
704 computer at Cornell in 1957,
but by the early 1960s he had bmlt
spemal-purpuse hardware that provided a direct, par-
allel implementation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt's work was
criticized by Marvin Minksy, whose objections were
published in the book “Perceptrons”, co-authored with

d Rosenblatt (1962) introduced the perceptron algorithm.

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this book contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
in widespread use, with examples in areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.

Christopher M. Bishop Pattern Recognition and Machine Learning, 2001



Perceptron neural network: architecture

d Simplest form of a neural network used for a linear classification.
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Perceptron neural network: architecture

O It uses a step function as an activation function: Yes/No question.
[ The step function is discontinuous: any problem?

o (s)
(s) +1 if s>46 S
O\S)= +1 .
—1 otherwise 1 ] | ;
1 ' ]
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Perceptron neural network: how to update parameters?

d Assuming that a data point X (x1, x2) has a label (-1)

d Assuming that it is misclassified to be (+1)
d Weight should be updated.
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Perceptron neural network: parameter update

6 Threshold value
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Perceptron neural network: parameter update
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weight +1 -
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Perceptron neural network: parameter update

[ You will see another type of update rule in a literature, which is same.

(new) .., (old) A (new) __ \,,(old) .
W =W 4y (Y, = Y,) - X G SR A e U
n [ A n - M
Where “A” denotes the set of all data points Where “M” denotes the set of all misclassified patterns
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Perceptron neural network: algorithm procedure

1) Random initialization of parameters
random ~w={w, w, w,, ..., w,}

2) Searching misclassified data points using the decision boundary (y,)
Y= WX+t W X, FWoXo+ L L WXy

2-1) Updating the parameters using the misclassified data points

WEW)= 014y .y x 5

2-2) Go to step 2) + + o+
+
a +
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Perceptron neural network: example

WK+ X, +WoX,=0 d Currenic deC|5|.on boundary is
0%, -1 X, +1 X,=0 determined with w=(0, -1, +1)

 Data point x. (1, 2, 3) is misclassified
1 Learning rate: y=0.1
X) ¢  Let’s update the parameter

O

X,= Xq

A
3 O X w=(0, -1, +1) X.=(1, 2, 3)
. / W = WD 4y y
/ =(0,-1+1) + (0.1)(-1)(1,2,3)
B
1 , X

-(-0.1, -12, 0.7)
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Perceptron neural network: example

WK+ X, +WoX,=0  Current decision boundary is

Oxg-1 X, +1 %,=0 determined with w=(0, -1, +1)
 Data point x. (1, 2, 3) is misclassified
7%, - 12%,-1=0 O Learning rate: y=0.1
X5 4 d Let’s update the parameter

/
/
/

Y C X5= Xq

A
3 @ /X w=(0, -1, +1) x.=(1, 2, 3)
. //'I w Mew) _ ,,ld) vy X
/ = (0,~1,+1) + (0.1)(-1)(1,2,3)
i

B
. X ~(-0.1, -12, 0.7)
0 1 2 3 X O New decision boundary is
1
7%, -12x,-1=0
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Perceptron neural network: convergence theorem

 The perceptron algorithm is guaranteed to find an exact solution within a finite
number of iteration if given data set is linearly separable.
- Slow convergence: cannot tell its feasibility until it’s convergence
- Does not converge if there is not any solution

- Many solutions exist: converge to one depending on an initial and the order of data feeding
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Perceptron neural network: multiclass classification

OO O

T  onetoone | onetorest

# of binary classifications [ K(K-1)/2 QK
to be carried out - AtoB - AtoB/C/D
(when thereisKclasses) - AtoC - BtoA/C/D
- AtoD - CtoA/B/D
- BtoC - DtoA/B/C
- BtoD
- CtoD
Feature O Complexity high [ Class imbalance problem
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Regression



Regression

J Given data set, regression fits them to a certain function
 Classification vs Regression

- Classification: given a data, its output is a discretized label
- Regression: given a data, its output is a continuous value
- Both belongs to supervised learning: input + label
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Linear regression

(J How much is the house below?

Price (y)

Y=W; X3+ WpXp

3
g

# of rooms (x;)
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Linear regression: Mean Square Error (MSE) function

rice
PHce (Vo) (X, ¥p)
. raN
Yy =W X + Wy X
Yn @
A ‘
wTx v
® ()
@
()
® o
X, # of rooms (x,,)
(x; x,=1)
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1) Analytical approach: normal equations
2) Systematical approach: gradient descent



Linear regression: 1) normal equation

MSE(w) = % (XW - Y)T (XW-Y)
(1x1) = [(nxm)(mx1)-(nx1)]T [(nxm)(mx1)-(nx1)]

_ % (OXW)T = YTY(XW - )

:%(WTXT ~YT)(XW -Y)

= L WTXTXW S Y TXW - WTXTY 4 YY)
2 YTXW = (WTXTY)T

= %(WTXTXW—ZWTXTY+YTY)

d(\j/\ET = % (2XTXW —2XTY) =0

XTXW =XTY W=(X"X)'X"Y

(mx1)  [(mxn)(nxm)]*(mxn)(nx1)
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Linear regression: 1) normal equation - example

W = (XTX)IXTY

(mx1)  [(mxn)(nxm)]1(mxn)(nx1)

price (y,)

(Xns Yn)
e WX, +WX,p=0
Yn |« @
A .
WX, | <
® @
@
@
® o
X, # of roo'ms (x,)
(x1,%0=1)
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>> xt
Xt =
1 2 3 4 5 6 7
1 1 1 1 1 1 1
==yt
yt =
1. 2.5 4.6 6.0 7.0 18.0 12.0
>> W= inverse(xt*x)*xt*y
wW =
3.1485
-5.5667

20,0 25.08 30.0

O transpose()
Q Inverse()
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Linear regression: 2) gradient descent
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How to obtain?
backpropagation

Label: y,

=> transpose(y)
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4. 0000
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Linear regression: 2) gradient descent
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Logistic regression

L Alogistic function is used to fit the given binary data set.
L Alogistic function is a common “S” shape function.

| YT T T T T T T ‘
o(X) = nERRERE Y- ann I
—a(x+b) |
1+e
= L: maximum value of the function . .,
= a:steepness of the curve P e 3 2 10 12 3 4 5 e A —
® b: location of the midpoint
sigmoid Hyper tangent
1 e —e"
o(X) = X o(X)=—=
1+e e"+e
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Logistic regression

U Is it a bicycle or motorbike?

. Decision boundary

for decision
motorbike | o000 oo © © @ 000000 ® o
I motorbike
l bicycle
bicycle |e 0000000 o ,
weight
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Logistic regression: cross entropy error function

J How to calculate the error given below?

: 1
- Labelis one or.zero G(X) _ T
- Outcome o(X) is a floating number between [0, 1] 1+e
Label: 1
motorbike| o 60:0 000 0 000 ® °

Label - Y =(1, 0) :
prediction: Yy = (o(X), 1—o(X)) } mbc'atorlbike
icycle
o(X) |
CEE(y, y):—zylogy bicycle ._.4........ o ;
X weight
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Logistic regression: cross entropy error function
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prediction: ¥ =(o(X), 1—o(X))

CEE(y,y)=-> ylogy Label -y = (1, 0)

When the prediction is correct, how correct is it?

Cross Entropy (error | mMsE_

-----------------------------------------------------------------------------------------------------

0.1,0.2,0.7 0,01 : -In(0.1)*0-In(0. 2)*0-In(0.7)*1 = 0.357 : (0.1-0)2+(0.2-0)%+(0.7-1)2 = 0.14

----------------------------------------------------------------------------------------

0.3,0.3,0.4 0,01 -In(0.3)*0-In(0.3)*0-In(0.4)*1=0.916  (0.3-0)?+(0.3-0)?>+(0.4-1)>=0.54

When the prediction is wrong, how wrong is it?

Cross Entropy (error _ msE

0.1,0.2,0.7 1,0,0  -In(0.1)*1-In(0.2)*0-In(0.7)*0 = 2.303  (0.1-1)2+(0.2-0)2+(0.7-0)2 = 1.34
0.3,0.3,0.4 1,0,0  -In(0.3)*1-In(0.3)*0-In(0.4)*0 = 1.204  (0.3-1)2+(0.3-0)2+(0.4-0)2= 0.74



Logistic regression: how to estimate the parameters?

B 1 B 1
O-(X) - 1 -s —W; X; —WoXo
+e l+e
Input data Label: Yn
weight f e e
1 1 ( ::) —~— W. A g/'
g 1 1— S =W X, + WX, y ",g
. o) | >0
¢ 1 Wl h
71 0 Sigmoid :
. ! 1
ot function 1
R
CEE(y,¥)=->_ylogy
Same story
backpropagation S OE (w) W OE(W) 0y s
1 1Ty 1 1 oy s ow,
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Logistic regression: how to estimate the parameters?
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