
1

Practical Machine Learning

Dr. Suyong Eum

Lecture 15

Tensorflow – DQN/PG/AC implementation

2

Reinforcement
Learning

Supervised
Learning

Unsupervised
Learning

 LCR (week2)
 SVM (week5)
 CNN (week8)
 RNN (week10)

 GMM (week3)
 HMM (week4)
 PCA (week6)
 VAE (week12)
 GAN (week12)

 DQN (week14)
 PG (week14)

Where we are

It’s implementation

3

You are going to learn

 What OpenAI and Gym are,
 Implementations of

- Deep Q-Network (DQN) – 2015
- Policy Gradient (PG)
- Actor Critic (AC)

4

OpenAI Gym

 OpenAI :
- A non-profit artificial intelligence (AI) research company that aims to promote and develop

friendly AI in such a way to benefit humanity as a whole.
- In October 2015, Elon Musk et al founded the organization.
- On April 2016, OpenAI released a public beta of “OpenAI Gym”, its platform for reinforcement

learning research.

 OpenAI Gym
- A toolkit for developing and comparing reinforcement learning algorithms
- https://github.com/openai/gym
- https://gym.openai.com/

https://github.com/openai/gym
https://github.com/openai/gym

5

Action at

Reward rt

State st

Take this
action

What to
do?

OpenAI Gym framework

RL model

6

Action at

Reward rt

State st

What to
do?

Gym framework

OpenAI Gym framework

Take this
action

RL model

7

OpenAI Gym framework: CartPole game

 State: 4 dimension vector
- [0]: cart position [-2.4 to 2.4]
- [1]: cart velocity [-Inf to Inf]
- [2]: pole angle [-42.8˚ to 41.8˚]
- [3]: pole velocity at tip [-Inf to Inf]

 Which game you want to play?

 Asking to Gym box

 Initialization

 Two actions: right(1) or left (0)

8

Reinforcement Learning (RL) algorithm

1) Deep Q-Networks (DQN)
2) Policy Gradient (PG)
3) Actor Critic (AC)

9

DQN implementation
https://github.com/hunkim/DeepLearningZeroToAll
- 07_3_dqn_2015_cartpole.py

https://github.com/hunkim/DeepLearningZeroToAll

10

DQN architecture (2015)

7.0),( EasQ

1.0),(WasQ

4.0),( SasQ

1.0),( NasQ

C
o

n
vo

lu
tio

n
al N

eu
ral N

etw
o

rk (C
N

N
)

C
o

n
vo

lu
tio

n
al N

eu
ral N

etw
o

rk (C
N

N
)

Fu
lly-co

n
n

e
cted

 layer

Fu
lly-co

n
n

e
cted

 layer

84x84x4 8x8x32
filters

4x4x64
filter

512
units

outputs
units

 All possible actions
- e.g, 2-18 actions

R
eLU

R
eLU

R
eLU

)(ts
Preprocessing:

RGB to grey

C
o

n
vo

lu
tio

n
al N

eu
ral N

etw
o

rk (C
N

N
)

3x3x64
filter

R
eLU

DQN

11

Algorithm (DQN 2015)

• Human-level control through deep reinforcement learning, Feb. 26, 2015, Nature

Data pool size and initialization

Weight of 1st NN initialization
Weight of 2nd NN initialization

Preprocessing, e.g., RGB to gray

Action selection using E-greedy: off-policy

Experience replay

Target future reward is obtained from NN (θ-)

Replace NN (θ-) with NN (θ) every C steps

Update NN (θ) without changing NN (θ-)

12

DQN Code

 Data pool size and initialization
- deque(): list-like container with fast operation
- https://docs.python.org/2/library/collections.html

13

DQN Code: experience replay

 Consecutive data frames are highly correlated

 Experience replay aims to remove the correlation between data samples

t=1t=2

. . .

t=T

Relay
Memory

Random batch
data from Relay

memory

s1, a1, r2, s2

s2, a2, r3, s3

s3, a3, r4, s4

. . .

st, at, rt+1, st+1

deque

14

 Main Q-Net and target ෠𝑄-Net creation
 Copy from main Q-Net to target ෠𝑄-Net

DQN Code

15

DQN Code: fixed Q-target

Target
Q network

Main
Q network

 Sample data (s,a,r,s’) randomly drawn from data pool U(D)
 Experience Replay

 Two different neural networks
 Fixed Q-target

state s

state s’

action a + reward r

state s

state s’
DQN
(θ-)

);','(ˆ
1

asQ

);','(ˆ masQ

. . .);','(ˆmax
'

asQ
a

DQN
(θ)

);,(ˆ
1 asQ

);,(ˆ masQ

. . .

16

 Decaying E-greedy implementation

DQN Code

17

DQN Code: Exploit vs Exploration

for i in range (1000)

e = 0.1 / (i+1)

if rand < e:
action = random

else:
action = argmax(Q(s,a))

Decaying E-greedy policy

 Random to
deterministic decision
as iteration goes on

18

 OpenAI GYM emulator

DQN Code

19

DQN Code: basic information

 Action:
- 0: left
- 1: right

 State: 4 dimension vector
- [0]: cart position [-2.4 to 2.4]
- [1]: cart velocity [-Inf to Inf]
- [2]: pole angle [-42.8˚ to 41.8˚]
- [3]: pole velocity at tip [-Inf to Inf]

 Initial state
- Random values between ±0.05

 Reward:
- +1 each unit time if it is not fallen

 Episode Termination
- Pole Angle is more than ±12˚
- Cart Position is more than ±2.4
- Episode length is greater than 200 (unit time)

 Training Termination
- Average reward is greater than or equal to 195 over 100 consecutive trials

https://github.com/openai/gym/wiki/CartPole-v0

20

DQN Code

 Experience replay implementation
 Wait until collecting enough number of input data (batch_size)
 Then, randomly sample “batch_size” number of inputs from the buffer

21

 Training the main Q-Net
given minibatch input

DQN Code

22

DQN Code

 Training the main Q-Net
given minibatch input

23

DQN Code

 Training the main Q-Net
given minibatch input

24

DQN Code

 Training the main Q-Net
given minibatch input

25

 Copy NN (θ
-
) with NN (θ) every C steps

DQN Code

26

Big picture for the implementation of DQN

DQN: Main

state: s
(1X4)

DQN: Target

e.g.,
64 batch files

Action selection
(Decaying E-greedy)

[[q(s, a0), q(s, a1)]]

[q’(s, a0)]

[[q’(s, a0), q(s, a1)]]

Finally copy the parameter
from Main Q-Net to Target Q-Net

Q target value
This value corresponds to the action taken
using the decaying E-greedy (tricky part)

[0]

[[q(s, a0), q(s, a1)]]

Backpropagation to
train Main Q-Net

Loss function

1) Reward
2) Next state

state: s’
(1X4)

27

PG implementation
http://karpathy.github.io/2016/05/31/rl/
https://github.com/hunkim/DeepLearningZeroToAll
- 08_1_pg_cartpole.py

https://github.com/hunkim/DeepLearningZeroToAll
https://github.com/hunkim/DeepLearningZeroToAll

28

PG Code

29

PG Code

“np.vsack” stacks each event on a
trajectory until an episode finish

30

PG Code: Q learning vs Policy gradient

Q learning Policy gradient

 Learning Q(s,a): modeling (Reward) values of actions
- Value based approach: learning Q values

 Learning π(a): modeling probability of actions
- Policy based approach: learning policy directly

 Deterministic policies:
- e.g., cannot model rock-paper-scissors game

 Stochastic policies
- e.g., can model rock-paper-scissors game

 Off-policy: an action is taken greedily
- Greed search to calculate Q(s,a) and then determine a

policy

 On-policy: an action is taken with a policy
- Following a trajectory created by a policy and update

it with given reward at the end.

 Learning update occurred step-by-step (bootstrapping)
- Low variance but high bias

 Learning update occurred episode-by-episode
- High variance but low bias

High bias High variance

31

PG Code

If an episode finishes,

1) Discounted reward is calculated
2) Then, it is normalized

- http://karpathy.github.io/2016/05/31/rl/

32

PG Code

33

Big picture for the implementation of PG

state: s

π (s, a)
No

Sampling actions
from the policy

1) {s1’, s2’, s3’, . . . , sn’}
2) Y ={a1, a2, a3, . . . , an}
3) {r1, r2, r3, . . . , rn}

One episode
finishes?

Yes

Using its mean 



n

i

ikk r
n

rr
1

' 1

Calculation of
Cross Entropy (CE)

PGN

Y: R or L

Given {s1’, s2’, s3’, . . . , sn’},
and find new policies
1) action_pred = {π1’, π2’, π3’, . . . , πn’}

Backpropagation
to train PGN

Loss
function

Normalization of
the reward (r’)

)_log(predactionYCE 

)_1log()1(predactionY 

'_ rCEfloss 

Y ={a1, a2, a3, . . . , an}

{r1, r2, r3, . . . , rn}

policy

34

Actor Advantage Critic (A2C)
https://github.com/hunkim/DeepLearningZeroToAll
- 10_1_Actor_Critic.ipynb

https://github.com/hunkim/DeepLearningZeroToAll

35

Big picture for the implementation of AC

state: s

π (s, a)
No

Sampling actions
from the policy

One episode
finishes?

Policy Network

Y = a

1) {a1, a2, a3, . . . , an}
2) {s1’, s2’, s3’, . . . , sn’}
3) {r1, r2, r3, . . . , rn}

Yes

V(s)

A=R-v(s)
Advantage calculation
and its normalization

{s1’, s2’, s3’, . . . , sn’}

{r1, r2, r3, . . . , rn}

Value Network

Loss
function

)()'(1 sVsVrA t   

{a1, a2, a3, . . . , an} Calculation of
Cross Entropy (CE)

Given {s1’, s2’, s3’, . . . , sn’},
and find new policies
1) action_pred = {π1’, π2’, π3’, . . . , πn’}

)),(log(asCE 

One-hot coding

Aasloss )),(log(
Backpropagation
to train Policy Net

Aasloss )),(log(

 21)()'(sVsVrloss t   

Backpropagation
to train Value Net

),(tt asH 

R

36

Big picture for the implementation of AC

state: s

π (s, a)
No

Sampling actions
from the policy

One episode
finishes?

Policy Network

Y = a

1) {a1, a2, a3, . . . , an}
2) {s1’, s2’, s3’, . . . , sn’}
3) {r1, r2, r3, . . . , rn}

Yes

V(s)

A=R-v(s)
Advantage calculation
and its normalization

{s1’, s2’, s3’, . . . , sn’}

{r1, r2, r3, . . . , rn}

Value Network

Loss
function

)()'(1 sVsVrA t   

{a1, a2, a3, . . . , an} Calculation of
Cross Entropy (CE)

Given {s1’, s2’, s3’, . . . , sn’},
and find new policies
1) action_pred = {π1’, π2’, π3’, . . . , πn’}

)),(log(asCE 

One-hot coding

Aasloss )),(log(
Backpropagation
to train Policy Net

Aasloss )),(log(

 21)()'(sVsVrloss t   

Backpropagation
to train Value Net

),(tt asH 

R

37

AC Code

Until one episode finishes

One-hot encoding for cross
entropy calculation

38

AC Code

R = [v(s1’), v(s2’), . . . , v(sn’)]
It represents value of each state
then we can obtain (r+ γv(s’))
e.g.,

S1’

S2’

S3’

Sn’

v(S1’)

v(S2’)

v(S3’)

v(Sn’)

. . .

39

AC Code

Value Network produces
value of each state: V(s)

40

AC Code

Advantage calculation

41

AC Code

Calculation of cross entropy

A: action
one-hot codingπ : policy

.

Policy (probability) and Action(one-hot encoding)

42

AC Code

Calculation of cross entropy

A: action
one-hot codingπ : policy

.

43

AC Code

 Entropy regularization term
 This term tries to uniformize the probability

distribution of actions defined in the first term.
- Entropy is maximized when all actions from

the policy π are same.
- It aims to occur all action with equal

probability (exploration)

44

AC Code: Loss function

),())()(()),(log()(11 ttttttt asHsVsVrasL    

Loss function to
train policy Network

45

Backup Slides

46

DQN Code

Tricky part!

 Training the main Q-Net and target
෠𝑄-Net given minibatch input

 3 batch samples
 Each sample: Q(R), Q(L)

 Insert target Q value into Y at
location; a=[1,0,1]
 Q network needs to be trained

to produce this value

