Practical Machine Learning

Lecture 15
Tensorflow — DQN/PG/AC implementation

Dr. Suyong Eum

CP OSAKA UNIVERSITY

Where we are

Supervised
Learning

= LCR (week2)
= SVM (week5)
= CNN (week8)
= RNN (week10)

_-- It’'s implementation

= GMM (week3)
= HMM (week4)
= PCA (weekb)

= VAE (week12)
= GAN (week12)

= DQN (week14)

= PG (week14) Reinforcement

Learning

Unsupervised
Learning

You are going to learn

1 What OpenAl and Gym are,

d Implementations of
- Deep Q-Network (DQN) — 2015
- Policy Gradient (PG)
- Actor Critic (AC)

OpenAl Gym

U OpenAl :
- A non-profit artificial intelligence (Al) research company that aims to promote and develop
friendly Al in such a way to benefit humanity as a whole.
- In October 2015, Elon Musk et al founded the organization.

- On April 2016, OpenAl released a public beta of “OpenAl Gym”, its platform for reinforcement
learning research.

U OpenAl Gym

- Atoolkit for developing and comparing reinforcement learning algorithms
- https://github.com/openai/gym
- https://gym.openai.com/

Gym is a toolkit for developing and comparing
reinforcement learning algorithms. It supports
teaching agents everything from walking to playing
games like Pong or Pinball.

https://github.com/openai/gym
https://github.com/openai/gym

OpenAl Gym framework

RL model

Take this
action

E —

«—

What to
do?

Action a,

v

Reward r,

A

State s,

A

OpenAl Gym framework

RL model

Take this
action

E —

«—

What to
do?

Action a,

v

Reward r,

A

State s,

A

Gym framework

OpenAl Gym framework: CartPole game

action >
RL model T) Reward r,
‘ State s,
What to -
do?
impoxrt gym

env=gyin.make [' CartPole—w0!')

O Which game you want to play?

Tnitizlize the current state

current state = env.reset() [l | Initialization

Aciticn as axn dxpput to gpm

action = 1 # right

O Two actions: right(1) or left (0)

ogpm returns values)
next state, reward, done, info = env.step(action] Q Asking to Gym box

ze2 the values

print ["current state:
print ("next state

print ("reward
print ["finished?

current state:
next state
reward
finished?

", current state)

: ", next state)
reward)

done)

moom m om

[0.02754178 -0.01649114 -0.01287597 -0.01059267]
[0.02721195 0.17881308 -0.01308783 -0.30731015]
1.0

False

(] State: 4 dimension vector

[0]: cart position [-2.4 to 2.4]

[1]: cart velocity [-Inf to Inf]

[2]: pole angle [-42.8° t0 41.87]
[3]: pole velocity at tip [-Inf to Inf]

Reinforcement Learning (RL) algorithm

action
RL model T I Reward r,
as. State s,
= =
What to
do?

1) Deep Q-Networks (DQN)
2) Policy Gradient (PG)
3) Actor Critic (AC)

DQN implementation

https://github.com/hunkim/DeeplearningZeroToAll
- 07_3 dgn_2015 cartpole.py

https://github.com/hunkim/DeepLearningZeroToAll

DQN architecture (2015)

#(s,)

Preprocessing:
RGB to grey 8 Q Q
2 2 2
S S S
1 HHHBE =
= =3 —E)=
= = = : <(g Q(s,a=E)=0.7
= z z S E —
> >
= = = ® O s, a=W)=0.1
e g g 2R A QL.) =
Z =N Z =N Z I o =S o
(| < ﬂ <) < o < Q S O 4 (X)
g g g E E Q(S’a—) — V. A+l
~ ~ =~ 0
> 2 o Q(s,a=N)=0.1
= = =
84x84x4 8x8x32 4x4x64 3x3x64 512 # outputs O All possible actions
filters filter filter units units - e.g, 2-18 actions
- /
DQN

10

Algorithm (DQN 2015)

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N -------------------ooooommo oo » Data pool size and initialization

Initialize action-value function Q with random weights 0 ~-----------------~ > Weight of 15t NN initialization

Initialize target action-value function O with weights0 =0 ---—--------------—- + Weight of 2"¥ NN initialization

For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(sy) ~------------------ + Preprocessing, e.g., RGB to gray
Fort=1,T do

With probability ¢ select a random action a,
otherwise select a; =argmax_Q(¢(s),a; 0) }
Execute action a, in emulator and observe reward r, and image x; . ,
Set s;+ 1 =s;,a;,%: 41 and preprocess ¢, , ;= P(s;+1)

Store transition (¢,;,a,r,¢;,,) in D

------------------- + Action selection using E-greedy: off-policy

Sample random minibatch of transitions ((ﬁ}-,aj,rj,gbj +1) fromD -~~~ + Experience replay
rj if episode terminates at step j+ 1
Sety; = rj+7y max, Q(qf)jﬂ,a’; 9_) otherwise -----------------—- + Target future reward is obtained from NN (0)
2
Perform a gradient descent step on (yj — Q((ﬁr,a}-; 9)) with respect to the -—------- > Update NN (0) without changing NN (6)
network parameters 0
Every Cstepsreset O=Q ------------------- + Replace NN (0°) with NN (0) every C steps
End For
End For

11 * Human-level control through deep reinforcement learning, Feb. 26, 2015, Nature

DQN Code

-
-
-

Algorithm 1: deep Q-learning with experience replay: -~~~ i
Initialize replay memory D to capacity N -~
Initialize action-value function Q with random weights 0

Initialize target acti

For episode = 1, M
Initialize sequen
Fort=1,T do

With probab

Data pool size and initialization
deque(): list-like container with fast operation
https://docs.python.org/2/library/collections.html

otherwise select a; =argmax_O(¢(s;),a; 0)

Execute action g, in emulator and observe reward r; and image x; , ,
Set s¢11 =s$¢,a:,%; 1 and preprocess ¢, ; =¢(s1+1)

Store transition (¢,,a;,r;,¢,) in D

Sample random minibatch of transitions (gﬁ-,aj,r}-,c;bj +1) from D

Sety; = .)
%=1 1,47 maxy Q(¢j+1,a’;9)

rj if episode terminates at step j+ 1

otherwise

2
Perform a gradient descent step on (yj — Q(58 9)) with respect to the
network parameters 0

Every C steps reset Q= Q

End For
End For

12

-

store the previous observations in replay memory

replay buffer =

I

deque (maxlen=REPLAY MEMORY)

with tf.Session() as sess:

mainDON = dgn.DQN(sess, INPUT SIZE, OUTPUT SIZE, name="main")
targetDQN = dgn.DQN(sess, INPUT SIZE, OUTPUT SIZE, name="target")
sess.run{tf.global variables initializer())

initial copy q net -> target net

copy ops = get copy var ops(dest scope name="target",
src_scope_name="main")

sess.run{copy ops)

for episode in range(MAX EPISODES):
e=1. / ((episode / 10) + 1)
done = False
step count = @
state = env.reset()

while not done:
if np.random.rand() = e:
action = env.action space.sample()
else:
Choose an action by greedily from the Q-network
action = np.argmax(mainDON.predict(state))

Get new state and reward from environment
next state, reward, done, = env.step(action)

if done: # Penalty
reward = -1

Save the experience to our buffer
replay buffer.append((state, action, reward, next state, done})

if len(replay buffer) > BATCH SIZE:
minibatch = random.sample(replay buffer, BATCH SIZE)
loss, = replay train(mainDQN, targetDQN, minibatch)

if step count % TARGET UPDATE FREQUENCY == 0:
sess.run{copy ops)

state = next state
step_count += 1

print("Episode: {} steps: {}".format(episode, step count))

DQN Code: experience replay

(J Consecutive data frames are highly correlated
(J Experience replay aims to remove the correlation between data samples

deque

t=T t=2 t=1 -
. o . . - m
Memory

S1yd1, 1,5y

N9y
N1y
Nn1=y
Nn1=y

M il
< =
Sz
(a) 0
o o
5 5
5 5
2 e

a
o o
a o
o)
2 2
o o
= -

0
=}
3
<
=
c
=t
o
3
=,
2
[0}
=
=
=,
2
M
—t
3
=}
=
=
O
=
=

0
(o)
)
<
=}
=
=
o
5
o
=
()
=
-
=8
=
()
—+
£
o
=
~
(@]
=
=2

(NND)>40M31aN [BINaN [BUOIIN|OAUCD)

S,, @y, I3, S3 8x8x32 Axdx64 3x3x64 512 #outputs
filters filter filter units units
S3, 93, I4) Sq Random batch ~ 7
data from Relay DON
memory

St A Fev1s St

13

DQN Code

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N -7
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 6~ =
For episode = 1, M do

-

Initialize sequence s, ={x,} and| ® Main Q-Net and target Q-Net creation
Copy from main Q-Net to target Q—Net

Fort= 1T do "

With probability ¢ select a ra
otherwise select a; =argmax_Q(¢(s;).a: 9)

Execute action g, in emulator and observe reward r; and image x; , ,
Set s¢11 =s$¢,a:,%; 1 and preprocess ¢, ; =¢(s1+1)

Store transition (¢,,a;,r;,¢,) in D

Sample random minibatch of transitions (gﬁ-,aj,r}-,c;bj +1) from D

rj if episode terminates at step j+ 1

SE%=1 1, +y maxy Q(¢j+1,a’; 9—) otherwise

2
Perform a gradient descent step on (yj — Q(58 9)) with respect to the

network parameters 0
Every C steps reset Q=0
End For
End For

14

store the previous observations in replay memory

replay buffer = deque(maxlen=REPLAY MEMORY)
last 180 game reward = degue(maxlen=100)

with tf.Session() as sess:
mainDQN = dgn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE,

initial copy q net -> target net

name="main")
targetDQN = dgn.DQN(sess, INPUT SIZE, OUTPUT SIZE, name="target")
sess.run{tf.global variables initializer())

copy ops = get copy var ops(dest scope name="target",

sess.run{copy ops)

for episode in range(MAX EPISODES):
e=1. / ((episode / 10) + 1)
done = False
step count = @
state = env.reset()

while not done:
if np.random.rand() = e:
action = env.action space.sample()
else:

src_scope name="main")

Choose an action by greedily from the Q-network
action = np.argmax(mainDON.predict(state))

Get new state and reward from environment

next state, reward, done, = env.step(action)

if done: # Penalty
reward = -1

Save the experience to our buffer

replay buffer.append((state, action, reward,

if len(replay buffer) > BATCH SIZE:

minibatch = random. sample{replay buffer,

next state, done))

BATCH SIZE)

loss, = replay train(mainDQN, targetDQN, minibatch)

if step count % TARGET UPDATE_ FREQUENCY =
S€55. run[cupy_ops}

state = next state
step_count += 1

print("Episode: {} steps: {}".format(episode,

step _count))

DQN Code: fixed Q-target

15

Target Main
Q network Q network
A A

Ill‘ llllllllllllllllllllllll

.....\. ‘lllllllllllllll.‘\

Lf(gi)=E(sars} Um}[(r+7maXQ(S a'|6- } Q(S a |9)) j|

\ J
Y

= Sample data (s,a,r,s’) randomly drawn from data pool U(D)
= Experience Replay

state s state s’)

action g + reward r

state s’

state s)

lllllllllllllllllllllllllll

snnngus® ‘ensmsssmmsmmmes Jus®

/

= Two different neural networks
= Fixed Q-target

== Q(s',a',;0") .
; } mng(s',a';@‘)
= Q(s",a'_:60")

llllllllllllllllll

llllllllllllllllll

replay buffer = deque(maxlen=REPLAY MEMORY)

DQN COde # store the previous observations in replay memory

last 180 game reward = degue(maxlen=100)

with tf.Session() as sess:

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; ={x; } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do
With probability ¢ select a random action a, _ _
otherwise select a; =argmax, Q(¢(s;),a;0) -
Execute action a, in emulator and observe reward r, and image x, , ; ""----__
Set s+ 1 =5¢,a:,%¢ 41 and prep b n
Store transition (¢,,arre, ¢, | ™ Decaying E-greedy implementation
Sample random minibatch of transitions (75-9:75:@; + 1] Trom D

7 if episode terminates at step j+ 1
Sety; = — Q(qu“’ar; 9—) otherwise

Perform a gradient descent step on (yj — Q(05 9)) ’ with respect to the
network parameters 0
Every C steps reset Q= Q
End For
End For

16

mainDON = dgn.DQN(sess, INPUT SIZE, OUTPUT SIZE, name="main")
targetDQN = dgn.DQN(sess, INPUT SIZE, OUTPUT SIZE, name="target")
sess.run{tf.global variables initializer())

initial copy q net -> target net

copy ops = get copy var ops(dest scope name="target",
src_scope_name="main")

sess.run{copy ops)

for episode in range(MAX EPISODES):
» € =1. / ((episode / 10) + 1)
done = False
step count = @
state = env.reset()

while not done:
if np.random.rand() < e:
~~~~~ > action = env.action space.sample()
else:
# Choose an action by greedily from the Q-network
action = np.argmax(mainDON.predict(state))

# Get new state and reward from environment
next state, reward, done, = env.step(action)

if done: # Penalty
reward = -1

# Save the experience to our buffer
replay buffer.append((state, action, reward, next state, done})

if len(replay buffer) > BATCH SIZE:
minibatch = random.sample(replay buffer, BATCH SIZE)
loss, = replay train(mainDQN, targetDQN, minibatch)

if step count % TARGET UPDATE FREQUENCY == 0:
sess.run{copy ops)

state = next state
step_count += 1

print("Episode: {} steps: {}".format(episode, step count))



DQN Code: Exploit vs Exploration

Decaying E-greedy policy

foriin range (1000)

e=0.1/(i+1) 7 Randomto
deterministic decision
as iteration goes on

if rand < e:
action = random

else:

action = argmax(Q(s,a))

17



DQN Code

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; ={x; } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax_O(¢(s;),a; 0)

Execute action g, in emulator and observe reward r; and image x;  ,

Set s;+1 =5;,a;,%:4+1 and preprocess ¢, ; =P(s;4+1)
Store transition (qﬁt,a,,rt,qbt +1) in D

=  QOpenAl GYM emulator

Sample random minibatch of transitions (qﬁ-,aj e =
S t rJ if epiS T ICTITIIIIIOTCT Ot ot 1 T
ety;= > _ .
Y rj+7 maxy Q(quH,a’; 0 ) otherwise

2
Perform a gradient descent step on (yj — Q( 58 9)) with respect to the

network parameters 0
Every C steps reset Q= Q
End For
End For

18

# store the previous observations in replay memory

replay buffer = deque(maxlen=REPLAY MEMORY)
last 180 game reward = degue(maxlen=100)

with tf.Session() as sess:
mainDON = dgn.DQN(sess, INPUT SIZE, OUTPUT SIZE, name="main")
targetDQN = dgn.DQN(sess, INPUT SIZE, OUTPUT SIZE, name="target")
sess.run{tf.global variables initializer())

# initial copy q net -> target net

copy ops = get copy var ops(dest scope name="target",
src_scope_name="main")

sess.run{copy ops)

for episode in range(MAX EPISODES):
e=1. / ((episode / 10) + 1)
done = False
step count = @
state = env.reset()

while not done:
if np.random.rand() = e:
action = env.action space.sample()
else:
# Choose an action by greedily from the Q-network
~ action = np.argmax(mainDON.predict(state))

~ # Get new state and reward from environment
next state, reward, done, = env.step(action)

if done: # Penalty
reward = -1

# Save the experience to our buffer

replay buffer.append((state, action, reward, next state, done})

if len(replay buffer) > BATCH SIZE:
minibatch = random.sample(replay buffer, BATCH SIZE)
loss, = replay train(mainDQN, targetDQN, minibatch)

if step count % TARGET UPDATE FREQUENCY == 0:
sess.run{copy ops)

state = next state
step_count += 1

print("Episode: {} steps: {}".format(episode, step count))



DQN Code: basic information

https://github.com/openai/gym/wiki/CartPole-v0

O Action:
- 0: left
- 1l:right
# Get new state and reward from environment

O State: 4 dimension vector next state, reward, done, _ = env.step(action)

- [O]: cart position [-2.4 to 2.4]

- [1]: cart velocity [-Inf to Inf]

- [2]: pole angle [-42.8" t0 41.8"]

- [3]: pole velocity at tip [-Inf to Inf]

L Initial state
- Random values between +0.05

U Reward: = 10={ndarray} [-0.1062376 -0.37924474 0.19689548 0.9208114]
- 41 each unit time if it is not fallen

O Episode Termination
- Pole Angle is more than £12°
- Cart Position is more than £2.4
- Episode length is greater than 200 (unit time)

O Training Termination

- Average reward is greater than or equal to 195 over 100 consecutive trials
19



DQN Code

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; ={x; } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax_O(¢(s;),a; 0)
Execute action g, in emulator and observe reward r; and image x; , ,
Set s;+1 =5;,a;.%:+1 and preprocess ¢, ; =P(s;1+1)
Store transition (¢,,a;,r:,¢, ) in D
Sample random minibatch of transitions (¢j 515,054 1) from D

rj if episode terminates at step j+ 1

SE%=1 1, +y maxy Q(¢j+1,a’; 9—) otherwise

2
Perform a gradient descent step on (yj — Q( 58 9)) with respect to the

network narameters f

# store the previous observations in replay memory

replay buffer = deque(maxlen=REPLAY MEMORY)
last 180 game reward = degue(maxlen=100)

with tf.Session() as sess:
mainDON = dgn.DQN(sess, INPUT SIZE, OUTPUT SIZE, name="main")
targetDQN = dgn.DQN(sess, INPUT SIZE, OUTPUT SIZE, name="target")
sess.run{tf.global variables initializer())

# initial copy q net -> target net

copy ops = get copy var ops(dest scope name="target",
src_scope_name="main")

sess.run{copy ops)

for episode in range(MAX EPISODES):
e=1. / ((episode / 10) + 1)
done = False
step count = @
state = env.reset()

while not done:
if np.random.rand() = e:
action = env.action space.sample()
else:
# Choose an action by greedily from the Q-network
action = np.argmax(mainDON.predict(state))

# Get new state and reward from environment
next state, reward, done, = env.step(action)

if done: # Penalty
- reward = -1

= Experience replay implementation

= Wait until collecting enough number of input data (batch_size)
= Then, randomly sample “batch_size” number of inputs from the buffer loss, = replay train(mainDQN, targetDQN, minibatch)

N # Save the experience to our buffer

if len(replay buffer) > BATCH SIZE:
minibatch = random.sample(replay buffer, BATCH SIZE)

20

if step count % TARGET UPDATE FREQUENCY == 0:
sess.run{copy ops)

state = next state
step_count += 1

print("Episode: {} steps: {}".format(episode, step count))

Son| replay buffer.append((state, action, reward, next state, done))



DQN Code

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; ={x; } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax_O(¢(s;),a; 0)
Execute action g, in emulator and observe reward r; and image x; , ,
Set s¢11 =s$¢,a:,%; 1 and preprocess ¢, ; =¢(s1+1)
Store transition (¢,,a;,r;,¢, ) in D
Sample random minibatch of transitions (qﬁ-,aj,r}-,gbj +1) from D

5 if episode terminates at step j+ 1

Sety; = rj+7 max, Q(¢j+1sﬂ';9_) otherwise

2
Perform a gradient descent step on (yj — Q(rﬁj 5 9)) with respect to the

network parameters 0
Every C steps reset Q= Q

End For

End For *" Training the main Q-Net

given minibatch input

21

# store the previous observations in replay memory

replay buffer = deque(maxlen=REPLAY MEMORY)
last 180 game reward = degue(maxlen=100)

with tf.Session() as sess:
mainDON = dgn.DQN(sess, INPUT SIZE, OUTPUT SIZE, name="main")
targetDQN = dgn.DQN(sess, INPUT SIZE, OUTPUT SIZE, name="target")
sess.run{tf.global variables initializer())

# initial copy q net -> target net

copy ops = get copy var ops(dest scope name="target",
src_scope_name="main")

sess.run{copy ops)

for episode in range(MAX EPISODES):
e=1. / ((episode / 10) + 1)
done = False
step count = @
state = env.reset()

while not done:
if np.random.rand() = e:
action = env.action space.sample()
else:
# Choose an action by greedily from the Q-network
action = np.argmax(mainDON.predict(state))

# Get new state and reward from environment
next state, reward, done, = env.step(action)

if done: # Penalty
reward = -1

# Save the experience to our buffer

N replay buffer.append((state, action, reward, next state, done})
RO if len(replay buffer) > BATCH SIZE:
\*CQ minibatch = random.sample(replay buffer, BATCH SIZE)
A loss, = replay train(mainDQN, targetDQN, minibatch)

if step count % TARGET UPDATE FREQUENCY == 0:
sess.run{copy ops)

state = next state
step_count += 1

print("Episode: {} steps: {}".format(episode, step count))



DQN Code

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; ={x; } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax_O(¢(s;),a; 0)
Execute action g, in emulator and observe reward r; and image x; , ,
Set s¢11 =s$¢,a:,%; 1 and preprocess ¢, ; =¢(s1+1)
Store transition (¢,,a;,r;,¢, ) in D
Sample random minibatch of transitions (gﬁ-,aj,r}-,c;bj +1) from D

5 if episode terminates at step j+ 1

rj+7y maxy Q ¢j+1sa’§9_)
2

Perform a gradient descent step on (yj — Q(rﬁj 5 9)) with respect to the

network parameters 0
Every C steps reset Q= Q

Sety; = otherwise

# store the previous observations in replay memory

replay buffer = deque(maxlen=REPLAY MEMORY)
last 180 game reward = degue(maxlen=100)

with tf Sessjon() 35 sess:

def replay train(mainDQN: dgqn.DQN, targetDQN: dqn.DQN, train batch: list) -> float:
"""Trains “mainDQN" with target Q values given by targetDON’

Args:
mainDON (dgn.DQN): Main DQN that will be trained
targetDQN (dqgn.DQN): Target DON that will predict Q target
train batch (list): Minibatch of replay memory
Each element is (s, a, r, s', done)
[(state, action, reward, next state, done), ...]

Returns:

float: After updating "mainDQN', it returns a "loss’

states = np.vstack([x[0] for x in train batch])
actions = np.array([x[1] for x in train batch])
rewards = np.array([x[2] for x in train batch])

next states = np.vstack([x[3] for x in train batch])
done = np.array([x[4] for x in train batch])

X = states
Q target =

y = mainDQN.predict(states)
y[np.arange(len(X)), actions] = Q target

# Train our network using target and predicted Q values on each episode
return mainDQN.update(X, y)

rewards + DISCOUNT RATE * np.max(targetDQN.predict(next states), axis=1) * ~done

End For

End For *" Training the main Q-Net

given minibatch input

22

MR r<yara« --r _________________________-- v
............. # Save the experience to our buffer ‘“u“"““
reptay. hqffer append( (state, action, reward, next state, done))
if len(replay buFfer).> BATCH SIZE: .=
minibatch = random. saMpLeireplay buffer BATCH SIZE)
loss, = replay_ traln(malnDQN targetDQN, minibatch)

if step count % TARGET UPDATE_ FREQUENCY =
S€55. run[cupy_ops}

state = next state
step_count += 1

print("Episode: {} steps: {}".format(episode, step count))




DQN Code

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; ={x; } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax_O(¢(s;),a; 0)
Execute action g, in emulator and observe reward r; and image x; , ,
Set s¢11 =s$¢,a:,%; 1 and preprocess ¢, ; =¢(s1+1)
Store transition (¢,,a;,r;,¢, ) in D
Sample random minibatch of transitions (gﬁ-,aj,r}-,c;bj +1) from D

Sety; = otherwise

rj+7y maxy Q ¢j+1sa’§9_)

2
Perform a gradient descent step on (yj — Q(rﬁj 5 9)) with respect to the
network parameters 0
Every C steps reset Q= Q

5 if episode terminates at step j+ 1

# store the previous observations in replay memory

replay buffer = deque(maxlen=REPLAY MEMORY)
last 180 game reward = degue(maxlen=100)

with tf Sessjon() 35 sess:

def replay train(mainDQN: dgqn.DQN, targetDQN: dqn.DQN, train batch: list) -> float:
"""Trains “mainDQN" with target Q values given by targetDON’

Args:
mainDON (dgn.DQN): Main DQN that will be trained
targetDQN (dqgn.DQN): Target DON that will predict Q target
train batch (list): Minibatch of replay memory
Each element is (s, a, r, s', done)
[(state, action, reward, next state, done), ...]

Returns:

float: After updating "mainDQN', it returns a "loss’
states = np.vstack([x[0] for x in train batch])
actions = np.array([x[1] for x in train batch])
rewards = np.array([x[2] for x in train batch])
next states = np.vstack([x[3] for x in train batch])
done = np.array([x[4] for x in train batch])

X = states

y = mainDQN.predict(states)
y[np.arange(len(X)), actions] = Q target

# Train our network using target and predicted Q values on each episode
return mainDQN.update(X, y)

End For

End For *" Training the main Q-Net

given minibatch input

23

DGR Tewara — =1
............. # Save the experience to our buffer ‘“u“"““
reptay. hqffer append( (state, action, reward, next state, done))
if len(replay buFfer).> BATCH SIZE: .=
minibatch = random. saMpLeireplay buffer BATCH SIZE)
loss, = replay_ traln(malnDQN targetDQN, minibatch)

if step count % TARGET UPDATE_ FREQUENCY =
S€55. run[cupy_ops}

state = next state
step_count += 1

print("Episode: {} steps: {}".format(episode, step count))

Q target = rewards + DISCOUNT RATE * np.max(targetDQN.predict(next states), axis=1) * ~done




DQN Code

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~
For episode = 1, M do
Initialize sequence s; ={x; } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax_O(¢(s;),a; 0)
Execute action g, in emulator and observe reward r; and image x; , ,
Set s¢11 =s$¢,a:,%; 1 and preprocess ¢, ; =¢(s1+1)
Store transition (¢,,a;,r;,¢, ) in D
Sample random minibatch of transitions (gﬁ-,aj,r}-,c;bj +1) from D

=0

7
7
7
e

r.
]
rj+7y maxy Q ¢j+1sa’§9_)

2
Perform a gradient descent step on (yj — Q(tﬁj,aj; 9)) with respectto the . ---
network parameters 0
Every C steps reset Q=0
End For
End For

if episode terminates at step j+ 1

Sety; = otherwise

Training the main Q-Net
given minibatch input

24

# store the previous observations in replay memory

replay buffer = deque(maxlen=REPLAY MEMORY)
last 180 game reward = degue(maxlen=100)

with tf Sessjon() 35 sess:

def replay train(mainDQN: dgqn.DQN, targetDQN: dqn.DQN, train batch: list) -> float:
"""Trains “mainDQN" with target Q values given by targetDON’

Args:
mainDON (dgn.DQN): Main DQN that will be trained
targetDQN (dqgn.DQN): Target DON that will predict Q target
train batch (list): Minibatch of replay memory
Each element is (s, a, r, s', done)
[(state, action, reward, next state, done), ...]
Returns:

float: After updating "mainDQN', it returns a "loss’

wan

states np.vstack([x[0] for x in train batch])
actions = np.array([x[1] for x in train batch])
rewards = np.array([x[2] for x in train batch])
next states = np.vstack([x[3] for x in train batch])

done = np.array([x[4] for x in train batch])

X = states
Q target =

y = mainDQN.predict(states)
y[np.arange(len(X)), actions] = Q target

# Train our network using target and predicted Q values on each episode
returs- mainDQN.update(X, y)

rewards + DISCOUNT RATE * np.max(targetDQN.predict(next states), axis=1) * ~done

........ TEwarad — -1 Y
............. # Save the experience to our buffer ‘“u“"““
reptay. hqffer append( (state, action, reward, next state, done))
if len(replay buFfer).> BATCH SIZE: .=
minibatch = random. saMpLeireplay buffer BATCH SIZE)
loss, = replay_ traln(malnDQN targetDQN, minibatch)

if step count % TARGET UPDATE_ FREQUENCY =
S€55. run[cupy_ops}

state = next state
step_count += 1

print("Episode: {} steps: {}".format(episode, step count))




# store the previous observations in replay memory
DQN COd e replay buffer = deque(maxlen=REPLAY MEMORY)
last 180 game reward = degue(maxlen=100)

with tf.Session() as sess:
mainDON = dgn.DQN(sess, INPUT SIZE, OUTPUT SIZE, name="main")
targetDQN = dgn.DQN(sess, INPUT SIZE, OUTPUT SIZE, name="target")
sess.run{tf.global variables initializer())

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N # initial copy q net -> target net

ST . . . . copy ops = get copy var ops(dest scope name="target",
Initialize action-value function Q with random weLghts_G = e
Initialize target action-value function Q with weights 0 = 0 sess.xun(copy ops)

\

For ?Pls(_)de =1,Mdo for epi\sgde in range(MAX EPISODES):

Initialize sequence s; ={x; } and preprocessed sequence ¢, =¢(s;) e =1 / ((episode / 10) + 1)

Fort=1,T do done =\ Fa'l.sE

] . ) step_count = ©
With probability ¢ select a random action a, state = &nv.reset()
\

otherwise select a; =argmax_O(¢(s;),a; 0) e s S
Execute action g, in emulator and observe reward r; and image x; , , if np. rén\dom. rand() < e:
Set Spa1 =St s, Xpi1 and preprocess ¢t+1 — ¢(St+1) action = env.action space.sample()

o . else: .
Store transition (¢taatarta¢t+l) inD # Choosé an action by greedily from the Q-network
Sample random minibatch of transitions (gﬁ-,aj,r}-,c;bjﬂ) from D action = yp.argmax(mainDQN.predict(state))
\
tj if episode terminates at step j+1 # Get new state\and reward from environment
Set y; = A _ . next state, reward, done, = env.step(action)
J rj+7 maxy Q({,b}, 11.d30 ) otherwise \

2 if done: # Penalti.a\
Perform a gradient descent step on (yj — Q( 58 9)) with respect to the reward = -1 \
network parameters 0

\

\
# Save the experience ‘o our buffer

Every C steps reset Q:Q R replay buffer.append((state, action, reward, next state, done))
\\ \
End For T if len(replay buffer) > Bﬁﬂ:{:H_SIZE:
End For N minibatch = random.sample(replay buffer, BATCH SIZE)
Sso loss, = replay_train[m‘ainDDN, targetDQN, minibatch)
\

= Copy NN (0°) with NN (0) every C steps AN

\
S if step_count % TARGET_UPDATE_FREQUENCY == 0O:
TA sess.run(copy ops)

state = next state
step_count += 1

25 print("Episode: {} steps: {}".format(episode, step count))



Big picture for the implementation of DQN

o e e e.g.’ . .
. LIl L 64 batch files DQN: Main
e NElEE P> ' [ [a(s, a0), (s, a1)]] [0]
L .. L L Relay Actiqn selection .
l l l Memory tat (Decaying E-greedy) (CartPole)
state: s
(1X4)
. Ll . _
1) Reward

Backpropagation to
train Main Q-Net

Loss function /\
[ [a(s, a0), a(s, al1)]]

2
[("Hr’ max O(s",a'[6) —'Q(3=“’|9=‘)) ] [ [d'(s, 20), q(s, a1)]]

2) Next state

. Finally copy the parameter
*~_| from Main Q-Net to Target Q-Net

Sety; ={ .
[a’(s, a0)] !
state: s’

Q target value . (1X4)
This value corresponds to the action taken DQN: Ta rget
using the decaying E-greedy (tricky part)

26



PG implementation

http://karpathy.github.io/2016/05/31/rl/
https://github.com/hunkim/DeeplearningZeroToAll
- 08 _1 pg cartpole.py



https://github.com/hunkim/DeepLearningZeroToAll
https://github.com/hunkim/DeepLearningZeroToAll

PG Code

for step in range(max_num_episodes):

Algorithm 1 “Vanilla” policy gradient algorithm

Initialize policy parameter 6, baseline b
for iteration=1,2, ... do
Collect a set of trajectories by executing the current policy
At each timestep in each trajectory, compute
the return R, = 3.} v*~try, and
the advantage estimate A, = R, — b(st).
Re-fit the baseline, by minimizing ||b(s;) — R:||?,
summed over all trajectories and timesteps.
Update the policy, using a policy gradient estimate g,
which is a sum of terms Vylog 7(a; | s¢, 0)A;
end for

28

# Initialize x stack, y stack, and rewards
xs = np.empty(shape=[0, input size])

ys = np.empty(shape=[@6, 1])

rewards = np.empty(shape=[6, 1])

reward sum = 0
observation = env.reset()

while True:
x = np.reshape(observation, [1, input size])

# Run the neural net to determine output
action prob = sess.run(action pred, feed dict={X: x})

# Determine the output based on our net, allowing for some randomness
action = 0 if action prob < np.random.uniform() else 1

# Append the observations and outputs for learning
xs = np.vstack([xs, x])
ys = np.vstack([ys, action]) # Fake action

# Determine the outcome of our action
observation, reward, done, = env.step(action)
rewards = np.vstack([rewards, reward])

reward sum += reward

if done:
# Determine standardized rewards
discounted rewards = discount rewards(rewards)
# Normalization
discounted rewards = (discounted rewards - discounted rewards.mean())
/(discounted rewards.std() + le-7)
1, = sess.run([loss, train],
feed dict={X: xs, Y: ys, advantages: discounted rewards})



PG Code

for step in range(max_num_episodes):
# Initialize x stack, y stack, and rewards
X

s = np.empty(shape=[6, input size])

ys = np.empty(shape=[@6, 1])

rewards

reward_sum

np.empty(shape=[6, 1])

0

observation = env.reset()

Algorithm 1 “Vanilla” policy gradient algorithm
Initialize policy parameter 6, baseline b
for iteration=1,2,... do
Collect a set of trajectories by executing the current policy
At each timestep in each trajectory, compute

A\

the return R, = ;;tl v ~try, and "y
the advantage estimate A = R, — b(s;). |

Re-fit the baseline, by minimizing |b(s;) — R:|?,

summed over all tre

Update the policy, u:

which is a sum of t
end for

“np.vsack” stacks each event on a
trajectory until an episode finish

29

v
\

while True:

x = np.reshape(observation, [1, input size])
# Run the neural net to determine output
action prob = sess.run(action pred, feed dict={X: x})

# Determine the output based on our net, allowing for some randomness
action = 0 if action prob < np.random.uniform() else 1

\

X ‘. # Append the observations end outputs for learning

L XS = np.vstack([xs, x])
. ys = np.vstack([ys, action]) # Fake action
\ # Determine the outcome of our action
\ observation, reward, done, _ = env.steplaction)
wrewards = np.vstack([rewards, reward])
reward sum += reward

if done:
# Determine standardized rewards
discounted rewards = discount rewards(rewards)
# Normalization
discounted rewards = (discounted rewards - discounted rewards.mean())
/(discounted rewards.std() + le-7)
sess.run([loss, train],
feed dict={X: xs, Y: ys, advantages: discounted rewards})

Ly



PG Code: Q learning vs Policy gradient

= Learning Q(s,a): modeling (Reward) values of actions = Learning m(a): modeling probability of actions

- Value based approach: learning Q values - Policy based approach: learning policy directly

= Deterministic policies: = Stochastic policies

- e.g., cannot model rock-paper-scissors game - e.g., can model rock-paper-scissors game

=  Off-policy: an action is taken greedily = On-policy: an action is taken with a policy

- Greed search to calculate Q(s,a) and then determine a - Following a trajectory created by a policy and update
policy it with given reward at the end.

= Learning update occurred step-by-step (bootstrapping) = Learning update occurred episode-by-episode
- Low variance but high bias - High variance but low bias

High bias High variance

)
N AT
LN,

30 !



PG Code

XS

for step in range(max_num_episodes):
# Initialize x stack, y stack, and rewards

np.empty(shape=[0, input size])

ys = np.empty(shape=[@6, 1])

rewards

reward_sum
observation

Algorithm 1 “Vanilla” policy gradient algorithm
Initialize policy parameter 6, baseline b
for iteration=1,2,... do
Collect a set of trajectories by executing the current policy
At each timestep in each trajectory, compute
the return R; = :,-;: ' ~tr., and \
the advantage estimate A, = R, — b(s). \
Re-fit the baseline, by minimizing ||b(s;) — R:||?, \
summed over all trajectories and timesteps. \
Update the policy, using a policy gradient estimate g, ¢
which is a sum of terms Vylog 7(a; | st,H)AAt \
end for B

\
\
\

If an episode finishes,

Discounted reward is calculated
Then, it is normalized
http://karpathy.github.io/2016/05/31/rl/

1)
2)

np.empty(shape=[6, 1])

0
env.reset()

while True:

x = np.reshape(observation, [1, input size])
# Run the neural net to determine output
action prob = sess.run(action pred, feed dict={X: x})

# Determine the output based on our net, allowing for some randomness
action = 0 if action prob < np.random.uniform() else 1

# Append the observations and outputs for learning
xs = np.vstack([xs, x])

ys = np.vstack([ys, action]) # Fake action

# Determine the outcome of our action
observation, reward, done, = env.step(action)
rewards = np.vstack([rewards, reward])

reward sum += reward

\if done:
\  # Determine standardized rewards
" discounted rewards = discount rewards(rewards)

\ # Normalization

. discounted rewards = (discounted rewards - discounted rewards.mean())

/(discounted rewards.std() + le-7)
sess.run([loss, train],
feed dict={X: xs, Y: ys, advantages: discounted rewards})

Ty

31



PG Code

XS

for step in range(max_num_episodes):
# Initialize x stack, y stack, and rewards
= np.empty(shape=[0, input size])

ys = np.empty(shape=[@6, 1])
rewards = np.empty(shape=[6, 1])

reward sum = 0
observation = env.reset()

Algorithm 1 “Vanilla” policy gradient algorithm
Initialize policy parameter 6, baseline b
for iteration=1,2,... do
Collect a set of trajectories by executing the current policy
At each timestep in each trajectory, compute
the return R, = ;;tl v ~try, and
the advantage estimate A, = R, — b(s;).
Re-fit the baseline, by minimizing ||b(s;) — R:||?,
summed over all trajectories and timesteps.
Update the policy, using a policy gradient estimate g, \\\
which is a sum of terms Vlog w(a; | s¢, 0)A: \
end for \

# Loss function: log likelihood * advantages
log lik = -Y*tf.log(action pred) - (1 - Y)*tf.log(l - action pred)
loss = tf.reduce sum(log lik * advantages)

# Learning
train = tf.train.AdamOptimizer(learning rate=learning rate).minimize(loss)

32

while True:

x = np.reshape(observation, [1, input size])

# Run the neural net to determine output
action prob = sess.run(action pred, feed dict={X: x})

# Determine the output based on our net, allowing for some randomness
action = 0 if action prob < np.random.uniform() else 1

# Append the observations and outputs for learning
xs = np.vstack([xs, x])
ys = np.vstack([ys, action])

# Fake action

# Determine the outcome of our action
observation, reward, done, = env.step(action)
rewards = np.vstack([rewards, reward])

reward sum += reward

if done:
# Determine standardized rewards
discounted rewards = discount rewards(rewards)
# Normalization
'\ discounted rewards = (discounted rewards - discounted rewards.mean())
N /(discounted rewards.std() + le-7)
WL, _ = sess.run([loss, train],
feed dict={X: xs, Y: ys, advantages: discounted rewards})



Big picture for the implementation of PG

Sampling actions

GYM i
from the policy —) —> One episode

(CartPole) finishes?

state: s

Yes
Given {s1’,s2’,s3’,...,sn’},

and find new policies

1) action_pred = {n1’, n2’, n3’,..., nn’}

1) {s1’,s2,s3’,...,sn’}
2) Y={al,a2,a3,...,an}

Backpropagation 3) {r1,r2,r3,...,rn}

to train PGN

Y ={al, a2, a3, ...

Loss _ Calculation of
Cross Entropy (CE)

function

loss . f=CE-r CE =-Y -log(action _ pred)
—(@-Y)log(L—action_ pred)

{r1,r2,r3,...

Normalization of
the reward (r’)

Using its mean I’k' =T ——Zl’i
33 )



Actor Advantage Critic (A2C)

https://github.com/hunkim/DeeplearningZeroToAll
10_1 Actor_Critic.ipynb



https://github.com/hunkim/DeepLearningZeroToAll

Big picture for the implementation of AC

Policy Network

m (s, a) Sampling actions

) ( from the policy

Given {s1’, s2’, s3/,

—)

state: s

One episode
>

Y=a
—) GYM
(CartPole)
...,sn’},

and find new policies

Backpropagation loss =log(z(s,a))- A

to train Policy Net
loss = log(z(s,a))- A Loss ' Calculation of
function Cross Entropy (CE)
+ pH7,(s,,a,)

CE =log(x(s,a))

1) action_pred = {nl’, 2, n3’, ..., nn’}

{al, a2, a3, .

Value Network

Backpropagation
to train Value Net

loss =[r., + NV (s) -V (s)[

35

Advantage calculation
and its normalization

.., an} One-hot coding

{r1,r2,r3, ...

No

finishes?

Yes

{s1’,s2’,s3’, ...

A=T, +N(s)-V(s)

1){al, a2, a3, ...
2){s1’,s2’,s3", ...
3){r1,r2,r3,..

,an}

’

, sh

., n}



Big picture for the implementation of AC

Policy Network

™
+

No

m (s, a) Sampling actions

. GYM One episode
) | fom the policy —) (CartPole) >

—)

finishes?
state: s
Given {s1’,s2’,s3’, ..., sn’}, Yes
and f!nd new poI|C|e,s s ’ 1){al, a2, a3, ..., an}
; 1) action_pred = {nl’, 2, n3’, ..., nn’} R )
Backpropagation loss = log( (s, a))- A 2){s1’,s2’,s3’,...,sn’}
to train Policy Net B ’ _ 3){r1,r2,r3,...,rn}
IOSS _ |og(ﬂ-(s a)) ) A LOSS Calculation of {al, a2, 33, ey an} One-hot codlng
’ i ' Cross Entropy (CE)
CE =log(x(s,a))

Value Network

Backpropagation
to train Value Net

loss =[r., + NV (s) -V (s)[

{s1’,s2,s3’,...,sn’}

{r1,r2,r3, ...

| 2
Advantage calculation A= rt+1 + 7)\/ (S') —\V (S)

and its normalization

36



AC Code

for episode in range(MAX EPISODES):

s = env.reset()
done = False
Policy Network No 5—]{:!'51: = 11
(s, a) Sampling actions s GYM One episode \ ?-_li:: ; % }
—) - from the policy — (CartPole) - finishes? - : : —
staters | @2 . Until one episode finishes
Given {s1’,s2’,s3’, ..., sn’} EplSﬂdE_
and find new policies
Backpropagation Joss —log(x(s.) A 1) action_pred = {nl’, n2’, n3’,.. ., nin’} while not done:
to train Policy Net e R (al,22,23,. an} One-hot coding
loss =log(7(s,a))-A I | tropy (CE) s = preprocess state(s)
+ BHZ,(5,a) dheton a = agent.choose an action(s)

CE =log(7(s,a))

Value Network

Backpropagation
to train Value Net

loss = [rH1 +V(s")— V(s)]2

37

1 V(s)
A=R-v(s)

Advantage calculation
and its normalization

A=r,+7V () -V(s)

s2, r, done, info = env.step(a)
s list.append(s)

a list.append(a)

r List.append(r)

5 = 52
episode r += r

a list = preprocess action(a list, action n)

One-hot encoding for cross
entropy calculation

agent.train(np.vstack(s list), a list, r list)




AC COde def H?in(self, S, A, R):

Train the actor critic networks
‘ Policy I/\ietwork l No

(1) Compute discounted rewards R
(2) Compute advantage values A=R - V
(3) Perform gradients updates

. (s, a) . : Y=a
) . ’ Sampling actions .
O< .0 A —) GYM One episode 2
- | O 74 s | rom the policy (CartPole) - P def discount rewards(r, gamma=0.99):
p ‘0] finishes? - .
staters | O """ take 1D float array of rewards and compute di«
- Given {s1, 52,53, .. ., sn’} discounted r = np.zeros like(r, dtype=np.float32)
and find new policies running add = ©
1) action_pred = {nl, n2’, n3’,..., nn’} >

Backpropagation
to train Policy Net

loss =log(x(s,a))- A Loss : Calculation of
gr(s. @) function Cross Entropy (CE)
+ ﬁHﬂe(spat)

loss =log(7(s,a))- 4 for t in reversed(range(len(r))):

running add = running add * gamma + r[t]
discounted r[t] = running add

{al,a2,a3,..., an} One-hot coding

CE =log(7(s,a)) return discounted r

Value Network

# 1. Get discounted 'R’s
R = discount _rewards(R)

Backpropagation
to train Value Net

loss = [rH1 +V(s")— V(s)]2

D & &
o 4

P

12 =y e

R =[v(s1’), v(s2’), ..., v(sn’)]
It represents value of each state

s
o

1 V(s)

A=R-v(s) then we can obtain (r+ yv(s’)) :d_dict=feed)
Advantage calculation _ '
and itz ngormalizattion 4= Ten T 7V(S )_ V(S) E.g., v
s @ vis) {float32}10.466174
rd(ADV) + 1le-8)
s2’ @ V(S2')
S3’ @ Vv(S3)

{Float32} 2.9701

[Float32} 1.99
Sn’® v(Sn’) {float32} 1.0

| feed dict=feed)

38



AC COde def train(sglf, S, A, R):

""" Train the actor critic networks
‘ Policy I/\ietwork l No

(1) Compute discounted rewards R
(2) Compute advantage values A=R - V
(3) Perform gradients updates

Wisssssssmsssssnnmmnnn

oo _ (s, a) Sampling actions Y=a GYM One episode :

) O =4 m— | {rom the policy | E— (CartPole) | P finisheps? def discount rewards(r, gamma=0.99):
staters | @Y ' "“" take 1D float array of rewards and compute di
Given {s1’, 52,53, ..., sn’}, Yes . discounted r = np.zeros like(r, dtype=np.float32):
and find new policies - running add = E
) 1) action_pred = {1, n2’, n3’, ..., i’} 1){31,' aZ: 33: Y an% . = -
Backpropagation loss =1 4 2){s1’, 52,53, ...,sn’} . X =
to train Policy Net oss =log(7(s,a))- 3, 12,13, .., m} : for t in reversed(range(len(r))) .
loss =log(7(s,a))- 4 Loss | 4 Calculation of fa1, a2, a3, an} One-hot coding : running _add = running add * gamma + r[t]
: function Cross Entropy (CE) . discounted r[t] = running add .
+ﬁHﬂe(st= f) E :
CE =log((s,a)) Value Network F return discounted r
alue Networ - - -
Backpropagation : {s1, 52,53, ..., E # 1. Get discounted 'R's E
to train Value Net - R = discount rewards(R)
loss = [, + 7 (s") -V (5)f : . :
_____ : ’;feia ge: s Value Network produces | &
: self.model.S: S value of each state: V(s)
{r1,r2,r3,... | } -
¥ - V = self.sess.run(self.model.vV, feed dict=feed) .
Advantage calculation A= + V(s Vs E o
and its normalization T+ V() =V () s # 3. Get Advantage values, A =R - V
: ADV = R - V :
- ADV = (ADV - np.mean(ADV)) / (np.std(ADV) + 1le-8)
# 4. Perform gradient descents
: feed = { -
- self.model.S: S,
self.model.A: A, -
: self.model.ADV: ADV,
self.model.R: R -
i} :
self.sess.run(self.model.train op, feed dict=feed)

39



AC COde def train(self, S, A, R):

""" Train the actor critic networks
‘ Policy I/\ietwork l No

(1) Compute discounted rewards R
(2) Compute advantage values A=R - V
(3) Perform gradients updates

Wisssssssmsssssnnmmnnn

® O (s, a) Sampling actions Y=a
O< 2 A — GYM One episode 2
) | =7 mm— | from the policy CartPole) | TP P def discount rewards(r, gamma=0.99):
: ( ) finishes? = :
staters | & “n" take 1D float array of rewards and compute di
Given {s1’, 52,53, ..., sn’}, Yes discounted r = np.zeros like(r, dtype=np.float32)
and f.lnd new pollme‘s o , 1){al, a2, a3,...,an} runnlng_add =0
Backpropagation loss =1 4 1) action_pred = {1’ n2’, n3’, ..., mn’} 2){s1’, 52,53, ...,sn’} X
to train Policy Net oss =log(7(s,a))- _ {1, 2,3, m} for t in reversed(range(len(r))):
loss = log((s, @) A Loss | 4 Calculation of fa1, a2, a3, an} One-hot coding running _add = running add * gamma + r[t]
: function Cross Entropy (CE) discounted r[t] = running add

+pPH7,(s,.a,)
CE =log(7(s,a)) return discounted r
Value Network -

Backpropagation ®< A {s1, 52,53, ..., # 1. Get discounted 'R's
to train Value Net a. D) R = discount_rewards(R)
5L 5 —
loss =[r,,, + 7V (s") -V (s)] o i

# 2. Get 'V's
feed = {

1 V(s) self.model.S: S
{r1,r2,r3,... }
A=R-v(s) ¥ V = self.sess.run(self.model.v, feed dict=feed)
dvantage calculation _ '
/-‘:md it; ngormalizattion A o rf+1 - }/V(S ) B V(S)

# 3. Get Advantage values, A =R - V
ADV =R - V
ADV = (ADV - np.mean(ADV)) / (np.std(ADV) + 1le-8)

# 4. Perform gradient descents
feed = {
self.model.S: S,
self.model.A: A,
self.model.ADV: ADV,
self.model.R: R

Advantage calculation

}

self.sess.run(self.model.train op, feed dict=feed)

40



AC Code

Calculation of cross entropy

7 : policy

A: action

one-hot coding

[[m(s1’,a0), m(s1’, al)]

[m(s2’, a0), m(s2’,al)]
[m(s3’, a0), m(s3’,al)]

DdsnﬂaOL}dsnﬂalﬂ]

[0, 1]
[1, 0]
[1, 0]

[0, 11]

—

state: s

Policy Network

Backpropagation
to train Policy Net
loss =log(z(s,a))- A

+pPH7,(s,.a,)

41

(s, a)

loss =log(w(s,a))- A

Loss
function

loss =|r,,,

<4

: def

v No
Sampling agtions =a
i GYM One episode
from the golic — -
Y (Cartpole) | ™| i ec
Given {s1’,s2’,s3, ..., sn’}
afd find new policies
action_pred ={nl, n2’, n3’,..., nn’}

Calculation of {a1,a2,a3,..., an}  One-hot coding

Cross Entropy (CE)

CE =log(7(s,a))

Backpropagation
to train Value Net

+ () -V ()]

Value Network

Advantage calculation A
and its normalization

_create op(self): . s . ) .
¥ Gl i e Policy (probability) and Action(one-hot encoding)

policy gain = tf.reduce sum(self.P * self.A, 1)
# output shape: [None]

policy gain = tf.log(policy gain) * self.ADV
policy gain = tf.reduce sum(policy gain, name="policy gain")

entropy
entropy

- tf.reduce sum(self.P * tf.log(self.P), 1)
tf.reduce mean(entropy)

value loss = tf.losses.mean squared error(self.V, self.R, scope="value loss")

# Becareful negative sign because we only can minimize

# we want to maximize policy gain and entropy (for exploration)
self.loss = - policy gain + value loss - entropy * 0.01
self.optimizer = tf.train.AdamOptimizer()

self.train op = self.optimizer.minimize(self.loss)

=ha V() -V (s)



AC Code

Calculation of cross entropy

7 : policy

A: action

one-hot coding

[[m(s1’,a0), m(s1’, al)]
[m(s2’, a0), m(s2’,al)]
[m(s3’, a0), m(s3’,al)]

DdsnﬂaOL}dsnﬂalﬂ]

[0, 1]
[1, 0]
[1, 0]

Policy Network

® (s, a)
_—) | Ul —
state: s @ )

Backpropagation
to train Policy Net
loss =log(7(s,a))-A Loss

function
+pPH7,(s,.a,)

loss =log(w(s,a))- A

4

Sampling aglons
from the pglicy

Givgh {s1’, s2’, s3/

One episode
-

Y=a
—) GYM
(CartPole)
..... sn’}

affd find new policies
action_pred ={nl, n2’, n3’,..., nn’}

Calculation of
Cross Entropy (CE)

CE =log(7(s,a))

Backpropagation
to train Value Net

loss =|r,

42

+1

+ () -V ()]

’

Value Network

1 V(s)

A=R-v(s)

Advantage calculation

and its normalization

: def _create op(self):
# output shape: [None]
policy gain = tf.reduce sum(self.P * self.A, 1)

# output shape: [None]
policy gain = tf.log(policy gain) * self.ADV
policy gain = tf.reduce sum(policy gain, name="policy gain")

- tf.reduce sum(self.P * tf.log(self.P), 1)

entropy |
tf.reduce mean(entropy)

entropy

value loss = tf.losses.mean squared error(self.V, self.R, scope="value loss")

# Becareful negative sign because we only can minimize

# we want to maximize policy gain and entropy (for exploration)
self.loss = - policy gain + value loss - entropy * 0.01
self.optimizer = tf.train.AdamOptimizer()

self.train op = self.optimizer.minimize(self.loss)

=2
o

finishes?

{al,a2,a3,..., an} One-hot coding

A=r, + V() -V (5)



AC Code

. (s, a) . : Y=a
(7_3 _ o Sampling act‘lons &YM
- | 3 A o ) | {rom the policy —) (CartPole)
state: s @ /
- Given {s1’,s2’,s3, ..., sn’}
and find new policies
Backpropagatjén Joss = loa((s.a)) A 1) action_pred = {nl, n2’, n3’,..., nn’}
to train Poligy Net & > (a1, a2, a3 an} One-hot codi
loss =log(7(4, a))- A Loss Calculation of 188,83y ne-hot coding
function ' Cross Entropy (CE)

+ BH7,(s,.a,) CE =log(7(s,a))

def create op(self):
# output shape: [None]

policy gain = tf.reduce sum(self.P * self.A, 1)

# output shape: [None]
policy gain = tf.log(policy gain) * self.ADV
policy gain = tf.reduce sum(policy gain, name="policy gain")

=2
o

- tf.reduce_sum(self.P * tf.log(self.P), 1)
tf.reduce mean(entropy)

v

entropy =
entropy =

value loss = tf.losses.mean squared error(self.V, self.R, scope="value loss")

# Becareful negative sign because we only can minimize

# we want to maximize policy gain and entropy (for exploration)
self.loss = - policy gain + value loss - entropy * 0.01
self.optimizer = tf.train.AdamOptimizer()

self.train op = self.optimizer.minimize(self.loss)

One episode
finishes?

Value Network

Backpropagation
to train Value Net

loss = [rH1 +V(s")— V(s)]2

43

1 V(s)
A=R-v(s)

Advantage calculation
and its normalization

= Entropy regularization term
= This term tries to uniformize the probability
distribution of actions defined in the first term.
- Entropy is maximized when all actions from
the policy w are same.
- It aims to occur all action with equal
probability (exploration)

=ha V() -V (s)




AC Code: Loss function

: def _create op(self):
# output shape: [None]
policy gain = tf.reduce sum(self.P * self.A, 1)

# output shape: [None]
policy gain = tf.log(policy gain) * self.ADV
policy gain = tf.reduce sum(policy gain, name="policy gain")

entropy = - tf.reduce sum(self.P * tf.log(self.P), 1)
entropy = tf.reduce mean(entropy)

value loss = tf.losses.mean squared error(self.V, self.R, scope="value loss")

# Becareful negative sign because we only can minimize

# we want to maximize policy gain and eatropy. (for exploration)
self.loss = - policy gain + value loss - entropy * 0.01
self.optimizer = tf.train.AdanOptimizer()

self.train op = self.optimizer\minimize(self.loss)

‘ Policy Network l

(s, a) v No
~ TU (S, a . . =23
@ i Sampling actions &YM o .
py- ) . — ne episode
) | O from the policy (Cartpole) | = finishes?
) . '
state: s e
Given {s1’,s2’,s3, ..., sn’} Yes
and find new policies 1){al, a2, a3 an}
eresrresirearreans S 1) action_pred = {nl’, n2’, n3’, ..., nin’} P
Backpropagation % Joss = 1o (7(s,a))- A 2){s1’, 52,53, ..., sn’}
to train Policy Net : g ’ 3){r1,r2,r3,.. ., rn}

Loss function to

Eloss =log(z(s,a))-4 Loss : Calculation of {a1,a2,a3,...,
function Cross Entropy (CE)

+ BH7,(s,,a,) rE— train policy Network
""""""""""""" N o e [P L(6) =109(7,(5,,8)) - (huy + V (S0) =V () + SH7, (5. @,)
| RE e
A=R-v(s) ¥
44 e ARtV



Backup Slides



# store the previous observations in replay memory
DQN COd e replay buffer = deque(maxlen=REPLAY MEMORY)

last 180 game reward = degue(maxlen=100)

with tf.Session() as sess:
def replay train(mainDQN: dgn.DQN, targetDQN: d Q
"""Trains "mainDQN" with target Q values g1

[1e, 208, 38]

. . . . Y = np.ar’*r‘ay{[[l,z], [411?]: [5113]]:}
Algorithm 1: deep Q-learning with experience replay. Args:
tiali : mainDQN (dqn.DQN): Main DQN that will Y| print ("Before: " , "Wn" ,
Initialize replay memory D to capacity N targetDON (dgn.DON): Target DON that wil| © : ¥)
Initialize action-value function Q with random weights 0 train batch (list): Minibatch of replay

e 1 . - . - Each element is (s, a, r, s', done)|| @ction = [1,8,1]

Initialize target action-value function Qw1th welghts 0 =0 [(state, action, reward, next state] y[np.arange(3), action] = Q

For episode = 1, M do s
eturns: : - e

Initialize sequence s, Z{xl} and preprocessed sequence ¢’1=¢(Sl) float: After updating ‘mainDQN', it ret] print ("After: %, "\n", y)

For t=1,T do states = np.vstack([x[0] for x in train bat Before:
With probability ¢ select a random action a, actions = np.array([x[1] for x in train bat] [[1 2]

. _ ) rewards = np.array([x[2] for x in train_bat 4 7
otherwise select a; =argmax, O(¢ (s ).a; 0) next states = np.vstack([x[3] for x in trai [4 7]

= 3 batch samples
= Each sample: Q(R), Q(L)

. . . : ; 53
Execute action g, in emulator and observe reward r, and image x; , , done = np.array([x[4] for x in train_batch]| AEt Er!]
Set s¢11 =s$¢,a:,%; 1 and preprocess ¢, ; =¢(s1+1) X = states [ 118] ° :nserfc targe’ElQOv:aL\]Iue into Y at
4 : ocation; a=[1,0,
Store transition ((ﬁfaa;hrh(bt—}—l) n D » Q_target = rewards + DISCOUNT RATE * np.max [Zg 3;] = Q network needs to be trained {Hone
Sample random minibatch of transitions (qﬁ-,aj,r}-,gbj +1) from D J ‘ ‘ [ 1 to produce this value
L7 y = mainDQN.predict(states)
1 if episode terminates at stepj+1 .- y[np.arange(len(X)), actions] = Q target
Setyf= rj+7y maxy Q(¢.+l,a’;9_) otherwise o’ # Train our network using target and predi TFICkV part! 'h episode
J 5 return. mainDQN.update(X, y)
Perform a gradient descent step on (yj — Q(tﬁj,aj; 9)) with respecttothe -~~~ rewara = -1 »
network parametersAB # Save the experience to ouk buffer
Every C steps reset Q= Q replay buffer.append((state,'action, reward, next state, done))
\
End For

.. . if len(replay buffer) = BATEH_\SIZE:
End For - Trammg the main Q‘Net and target minibatch = random.sample(replay buffer, BATCH SIZE)

Q—Net given minibatch input loss, = replay train(mainDQN, targetDQN, minibatch)

if step count % TARGET UPDATE FREQUENCY == 0:
sess.run{copy ops)

state = next state
step_count += 1

46 print("Episode: {} steps: {}".format(episode, step count))



