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Practical Machine Learning

Dr. Suyong Eum

Lecture 15

Tensorflow – DQN/PG/AC implementation
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Reinforcement 
Learning

Supervised 
Learning

Unsupervised 
Learning

 LCR (week2)
 SVM (week5)
 CNN (week8)
 RNN (week10)

 GMM (week3)
 HMM (week4)
 PCA (week6)
 VAE (week12)
 GAN (week12)

 DQN (week14)
 PG (week14)

Where we are

It’s implementation
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You are going to learn  

 What OpenAI and Gym are,
 Implementations of 

- Deep Q-Network (DQN) – 2015
- Policy Gradient (PG)
- Actor Critic (AC)
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OpenAI Gym 

 OpenAI :
- A non-profit artificial intelligence (AI) research company that aims to promote and develop 

friendly AI in such a way to benefit humanity as a whole.
- In October 2015, Elon Musk et al founded the organization.
- On April 2016, OpenAI released a public beta of “OpenAI Gym”, its platform for reinforcement 

learning research.

 OpenAI Gym
- A toolkit for developing and comparing reinforcement learning algorithms
- https://github.com/openai/gym
- https://gym.openai.com/

https://github.com/openai/gym
https://github.com/openai/gym
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Action at

Reward rt

State st

Take this 
action

What to 
do?

OpenAI Gym framework

RL model
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Action at

Reward rt

State st

What to 
do?

Gym framework

OpenAI Gym framework

Take this 
action

RL model
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OpenAI Gym framework: CartPole game

 State: 4 dimension vector
- [0]: cart position [-2.4 to 2.4]
- [1]: cart velocity [-Inf to Inf]
- [2]: pole angle [-42.8˚ to 41.8˚]
- [3]: pole velocity at tip [-Inf to Inf]

 Which game you want to play?

 Asking to Gym box

 Initialization

 Two actions: right(1) or left (0)
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Reinforcement Learning (RL) algorithm

1) Deep Q-Networks (DQN)
2) Policy Gradient (PG)
3) Actor Critic (AC)
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DQN implementation
https://github.com/hunkim/DeepLearningZeroToAll
- 07_3_dqn_2015_cartpole.py

https://github.com/hunkim/DeepLearningZeroToAll
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DQN architecture (2015)
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Algorithm (DQN 2015)

• Human-level control through deep reinforcement learning, Feb. 26, 2015, Nature

Data pool size and initialization

Weight of 1st NN initialization
Weight of 2nd NN initialization

Preprocessing, e.g., RGB to gray

Action selection using E-greedy: off-policy

Experience replay

Target future reward is obtained from NN (θ-) 

Replace NN (θ-) with NN (θ) every C steps

Update NN (θ) without changing NN (θ-)
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DQN Code

 Data pool size and initialization
- deque(): list-like container with fast operation
- https://docs.python.org/2/library/collections.html
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DQN Code: experience replay

 Consecutive data frames are highly correlated

 Experience replay aims to remove the correlation between data samples

t=1t=2

. . .

t=T

Relay 
Memory

Random batch 
data from Relay 

memory

s1, a1, r2, s2

s2, a2, r3, s3

s3, a3, r4, s4

. . .

st, at, rt+1, st+1

deque
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 Main Q-Net and target ෠𝑄-Net creation
 Copy from main Q-Net to target ෠𝑄-Net

DQN Code
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DQN Code: fixed Q-target

Target 
Q network

Main 
Q network

 Sample data (s,a,r,s’) randomly drawn from data pool U(D)
 Experience Replay

 Two different neural networks
 Fixed Q-target

state s

state s’

action a + reward r

state s

state s’
DQN
(θ-)

);','(ˆ
1

asQ

);','(ˆ masQ

. . . );','(ˆmax
'

asQ
a

DQN
(θ)

);,(ˆ
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);,(ˆ masQ
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 Decaying E-greedy implementation

DQN Code
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DQN Code: Exploit vs Exploration

for i in range (1000)

e = 0.1 / (i+1)

if rand < e:
action = random

else:
action = argmax(Q(s,a))

Decaying E-greedy policy

 Random to 
deterministic decision 
as iteration goes on
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 OpenAI GYM emulator

DQN Code
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DQN Code: basic information

 Action:
- 0: left
- 1: right

 State: 4 dimension vector
- [0]: cart position [-2.4 to 2.4]
- [1]: cart velocity [-Inf to Inf]
- [2]: pole angle [-42.8˚ to 41.8˚]
- [3]: pole velocity at tip [-Inf to Inf]

 Initial state
- Random values between ±0.05

 Reward:
- +1 each unit time if it is not fallen

 Episode Termination
- Pole Angle is more than ±12˚
- Cart Position is more than ±2.4
- Episode length is greater than 200 (unit time)

 Training Termination
- Average reward is greater than or equal to 195 over 100 consecutive trials

https://github.com/openai/gym/wiki/CartPole-v0
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DQN Code

 Experience replay implementation
 Wait until collecting enough number of input data (batch_size)
 Then, randomly sample “batch_size” number of inputs from the buffer
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 Training the main Q-Net 
given minibatch input

DQN Code
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DQN Code

 Training the main Q-Net 
given minibatch input
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DQN Code

 Training the main Q-Net 
given minibatch input
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DQN Code

 Training the main Q-Net 
given minibatch input
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 Copy NN (θ
-
) with NN (θ) every C steps

DQN Code
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Big picture for the implementation of DQN

DQN: Main

state: s
(1X4)

DQN: Target

e.g., 
64 batch files

Action selection
(Decaying E-greedy)

[ [q(s, a0), q(s, a1)]]  

[q’(s, a0)]

[ [q’(s, a0), q(s, a1)]]

Finally copy the parameter 
from Main Q-Net to Target Q-Net

Q target value
This value corresponds to the action taken 
using the decaying E-greedy (tricky part)

[0]

[ [q(s, a0), q(s, a1)]]  

Backpropagation to 
train Main Q-Net

Loss function

1) Reward
2) Next state

state: s’
(1X4)
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PG implementation
http://karpathy.github.io/2016/05/31/rl/
https://github.com/hunkim/DeepLearningZeroToAll
- 08_1_pg_cartpole.py

https://github.com/hunkim/DeepLearningZeroToAll
https://github.com/hunkim/DeepLearningZeroToAll
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PG Code
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PG Code

“np.vsack” stacks each event on a 
trajectory until an episode finish
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PG Code: Q learning vs Policy gradient

Q learning Policy gradient

 Learning Q(s,a): modeling (Reward) values of actions
- Value based approach: learning Q values

 Learning π(a): modeling probability of actions
- Policy based approach: learning policy directly

 Deterministic policies: 
- e.g., cannot model rock-paper-scissors game

 Stochastic policies
- e.g., can model rock-paper-scissors game

 Off-policy: an action is taken greedily 
- Greed search to calculate Q(s,a) and then determine a 

policy

 On-policy: an action is taken with a policy
- Following a trajectory created by a policy and update 

it with given reward at the end.

 Learning update occurred step-by-step (bootstrapping)
- Low variance but high bias

 Learning update occurred episode-by-episode
- High variance but low bias

High bias High variance
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PG Code

If an episode finishes,

1) Discounted reward is calculated
2) Then, it is normalized

- http://karpathy.github.io/2016/05/31/rl/
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PG Code
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Big picture for the implementation of PG

state: s

π (s, a)
No

Sampling actions 
from the policy

1) {s1’, s2’, s3’, . . . , sn’}
2) Y ={a1, a2, a3, . . . , an} 
3) {r1, r2, r3, . . . , rn}

One episode 
finishes?

Yes

Using its mean 



n

i

ikk r
n

rr
1

' 1

Calculation of
Cross Entropy (CE)

PGN

Y: R or L

Given {s1’, s2’, s3’, . . . , sn’},
and find new policies
1) action_pred = {π1’, π2’, π3’, . . . , πn’} 

Backpropagation 
to train PGN

Loss 
function

Normalization of 
the reward (r’)

)_log( predactionYCE 

)_1log()1( predactionY 

'_ rCEfloss 

Y ={a1, a2, a3, . . . , an}

{r1, r2, r3, . . . , rn}

policy
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Actor Advantage Critic (A2C) 
https://github.com/hunkim/DeepLearningZeroToAll
- 10_1_Actor_Critic.ipynb

https://github.com/hunkim/DeepLearningZeroToAll
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Big picture for the implementation of AC

state: s

π (s, a)
No

Sampling actions 
from the policy

One episode 
finishes?

Policy Network

Y = a

1) {a1, a2, a3, . . . , an} 
2) {s1’, s2’, s3’, . . . , sn’}
3) {r1, r2, r3, . . . , rn}

Yes

V(s)

A=R-v(s)
Advantage calculation 
and its normalization

{s1’, s2’, s3’, . . . , sn’}

{r1, r2, r3, . . . , rn}

Value Network

Loss 
function

)()'(1 sVsVrA t   

{a1, a2, a3, . . . , an} Calculation of
Cross Entropy (CE)

Given {s1’, s2’, s3’, . . . , sn’},
and find new policies
1) action_pred = {π1’, π2’, π3’, . . . , πn’} 

)),(log( asCE 

One-hot coding

Aasloss  )),(log(
Backpropagation 
to train Policy Net

Aasloss  )),(log(

 21 )()'( sVsVrloss t   

Backpropagation 
to train Value Net

),( tt asH 

R
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Big picture for the implementation of AC

state: s

π (s, a)
No

Sampling actions 
from the policy

One episode 
finishes?

Policy Network

Y = a

1) {a1, a2, a3, . . . , an} 
2) {s1’, s2’, s3’, . . . , sn’}
3) {r1, r2, r3, . . . , rn}

Yes

V(s)

A=R-v(s)
Advantage calculation 
and its normalization

{s1’, s2’, s3’, . . . , sn’}

{r1, r2, r3, . . . , rn}

Value Network

Loss 
function

)()'(1 sVsVrA t   

{a1, a2, a3, . . . , an} Calculation of
Cross Entropy (CE)

Given {s1’, s2’, s3’, . . . , sn’},
and find new policies
1) action_pred = {π1’, π2’, π3’, . . . , πn’} 

)),(log( asCE 

One-hot coding

Aasloss  )),(log(
Backpropagation 
to train Policy Net

Aasloss  )),(log(

 21 )()'( sVsVrloss t   

Backpropagation 
to train Value Net

),( tt asH 

R
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AC Code

Until one episode finishes

One-hot encoding for cross 
entropy calculation
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AC Code

R = [v(s1’), v(s2’), . . . , v(sn’)]
It represents value of each state 
then we can obtain (r+ γv(s’))
e.g., 

S1’

S2’

S3’

Sn’

v(S1’)

v(S2’)

v(S3’)

v(Sn’)

. . .
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AC Code

Value Network produces 
value of each state: V(s)
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AC Code

Advantage calculation



41

AC Code

Calculation of cross entropy

A: action 
one-hot codingπ : policy 

.

Policy (probability) and Action(one-hot encoding)
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AC Code

Calculation of cross entropy

A: action 
one-hot codingπ : policy 

.
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AC Code

 Entropy regularization term
 This term tries to uniformize the probability 

distribution of actions defined in the first term.
- Entropy is maximized when all actions from 

the policy π are same.
- It aims to occur all action with equal 

probability (exploration)
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AC Code: Loss function

),())()(()),(log()( 11 ttttttt asHsVsVrasL    

Loss function to 
train policy Network
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Backup Slides
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DQN Code

Tricky part!

 Training the main Q-Net and target 
෠𝑄-Net given minibatch input

 3 batch samples
 Each sample: Q(R), Q(L)

 Insert target Q value into Y at 
location; a=[1,0,1]
 Q network needs to be trained 

to produce this value


