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You are going to learn

d The basic concept of generative models

d Two generative models:
1) Variational Auto Encoder (VAE)
2) Generative Adversarial Networks (GAN)

(d Some applications you may be interested



What are Generative models?

d There are two types of models:
1) Discriminative models
2) Generative models

Determinative model, e.g., SVM




Basic operation

d Literally speaking, a sample can be generated from generative models.
- Of course, the model needs to be trained in advance to generate such a
sample which you are interested.

Each data point

has 64 dimension . L
Project the data points in

2 dimension



Basic operation

d Literally speaking, a sample can be generated from generative models.
- Of course, the model needs to be trained in advance to generate such a
sample which you are interested.
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Variational AutoEncoder (VAE)



ldea of VAE

J To build a method which does the following procedure systematically.

Each data point
has 64 dimension

a sample
can be
generated

Project the data point in

2 dimension

64 dimensions

We can generate a new image which
corresponds to the sample.
It is NOT one of training data points!



ldea of VAE

0 Assuming that there is a complex model parameterized with “6”
O The model generates data {x\¥, x?), ..., x(N)} given a latent variable “z”: p,(x|z)
O Also, the model maps data set into the latent space: p,(z|x)

Data space (x) Latent space (z) Data space (x)

a sample E

P, ("] 2)




ldea of VAE

O This Intractability is well known, which can be handled with 1) Markov Chain Monte Carlos (MCMC)
and 2) Variational Inference (VI).

d VAE uses the idea of Variational Inference and so the term “Variational” is in the name.

Data space (x) Latent space (z) Data space (x)

a sample E

P, ("] 2)
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o 7

Approximate the function “p” using a neural network

(d Auto Encoder is a neural network which reproduces its input

Data space (x) Latent space (z) Data space (x)
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o _ 7

Approximate the function “p” using a neural network

(d Auto Encoder is a neural network which reproduces its input

Data space (x) Latent space (z) Data space (x)
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o _ 7

Approximate the function “p” using a neural network

(d Auto Encoder is a neural network which reproduces its input

Data space (x) Latent space (z) Data space (x)
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VAE model
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A loss function for AutoEncoder

d How can we train the network to obtain the parameter ¢ and 6 ?
- To train the neural network, a loss function is necessary. Then, the parameter “p and 0” can be
calculated through a backpropagation.
d Let’s derive the loss function from the likelihood function py(X)

Likelihood function showing the probability

pg (X(l) y* %, X(N)) — H:\ll |Og pg (X (i)) mmmmm) that given batch data set occur with the

parameter 0 in the neural network.

|Og pg (X(l) X(N)) — Zilil Iog pH (X (i)) mmmmm) (log) likelihood

—————————————————————————————————————————————————————————————————————————————

log p, (x") = L(0,¢;x") + Dy (@, (2| x) 1 p, (2| X))

l b O Kullback-Leibnitz divergence showing how difference
between two posterior distributions: true posterior
p(z|x) and its approximate posterior g(z|x)

O This term is intractable because of p(z|x).

O However, we know D,, >0.

O Since D, 20, “L” is the lower bound of the likelihood
function, which is called “ELBO” (Evidence Lower Bound)
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...........

Iog Po (X(l)f"’X(N)) — Z:ilélOg Po (X(i))é

-----------

————————————

Proof: If you are interested...

____________

log p(x) = > q(z|x)log p(x) p(x,2) = Pz, %)
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a(z | x) 4 / p(z | x)



A loss function for AutoEncoder

O By maximizing “L”, we can maximize the likelihood function as well

J

_______________________________
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A loss function for AutoEncoder

O By maximizing “L”, we can maximize the likelihood function as well,
O In other words, the most likely model (p, and p(p), which generates the observed data,
can be obtained by maximizing the function below.

(e (e
I I

log P, (x”) 2 -Dy (0, (2| ") | p, (2)) +E

-----------------------------------------------------------------------------------------------

=t b ted i losed f ‘
can be computed in a closed form O py(x|z) ~ N(u, 62) or Bernoulli

Q q,(zIx) ~ N, 6?) d D: dimension of x
3 pg(z) ~ N(O, 1)
A J: dimension of z .
o1 1 i (X('I) —Hy, )2
J =>| Slog((el)))+ 5
1 ( (i)\2 (i)\2 (i) 2) =1 | %
_Eé 1+|Og((o-zj ) )_(:uzj ) _(sz )
min|x—X|

Auto-Encoding Variational Bayes (appendixB: ~ Frmromomoomomsmsomomooemoee o
derivation) https://arxiv.org/pdf/1312.6114.pdf

18


https://arxiv.org/pdf/1312.6114.pdf

Variational Auto Encoder (VAE): summary

A generative model based on a neural network (AutoEncoder)
O Its loss function is derived based on variational inference approach (Variational)

[ The loss function calculates the error used to train Auto Encoder through backpropagation
- Thatis the reason why it is called “Variational AutoEncoder” (VAE).
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Generative Adversarial Networks (GAN)

https://arxiv.org/pdf/1701.00160.pdf



What is the motivation of GAN instead of VAE?

21

d In VAE, we design a latent space which maps to a data space.

d Then, a latent variable in the space is used to generate a data sample.
d However, actually we are interested in not the latent space but a sample itself.
d Then, why do we generate samples directly without the latent space estimation?

Maximum Likelihood
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https://arxiv.org/pdf/1701.00160.pdf



How does GAN work?

J GAN: Generative Adversarial Network
J Based on game theory to train the system which directly generates a sample

J Adversarial:
‘GAN framework can naturally be analyzed with the tools of game theory, we call GANs

“adversarial”’ -lan Goodfellow

Discriminator  —— Generator
(Police) E——) (Counterfeiter)

Real or Fake

22 https://arxiv.org/pdf/1701.00160.pdf



Theory: formulation of an optimization problem

O Expectation that discriminator (D) tells O Expectation that D tells fake is real
real is real (D successes) (D fails)
O Training discriminator to maximize it O Training generator to minimize a fake

notation __|deseription

X~ Pyata(X) Real data sample

~ p,(2) A random number from N(O, 1)
G(z) Fake data sample
D(x)=1 Probability of discriminator (D) telling that given real data “x” is real

D(G(z))=0 Probability of discriminator (D) telling that given fake data “G(z)” is fake
1-D(G(z)) Probability of discriminator (D) telling that given fake data “G(z)” is real
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Theory: illustration

minmaxV(D,G) =E,_,  [logD(x)]I+E,, ,llogd~D(G(2)))]
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 Generator keeps trained to generate a fake one similar to real and so finally Discriminator
cannot tell a fake from a real => its probability becomes 0.5.

24 https://arxiv.org/abs/1406.2661



Theory: its global optimal solution p,=p,4.;,

] For the fixed generator (G), the optimal discriminator value (D*) is

mGin mng (D,G)=E,._ Iodata(x)[log D(X)]+ Ez~pz(z)[log(1— D(G(2)))]
maxV (D) = [ Py (X)10g(D())dx + [ p, (2)log(L- D(G(2)))dz

= [ Pawa () 10g(D(X)) + P, (x) log(1— D(x))dlx

dV(D) _ Pua® __Ps(X) _ o ipiyo— Pae®)
dD  D(x) 1-D(x) T Paaa () + Py (X)

ERETTErRI
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Theory: its global optimal solution p,=p,4.;,

[ With the optimum value of D*, lower bound of V(G) is

mGin mng (D,G)=E,, »llogDX)I+E,_, ,llogld-D(G(2)))]

minV (G) =E, . o[10g D" ()]+E,_, (,[logl—D"(x)))]

Backup
slide

——————————

This is the minimum value of V(G) when JSD=0 (p,=py,)

1 JSD: Jensen Shannon divergence
- A method of measuring the similarity between two probability distribution.
- 0<IJSD(p|g) <1
26



Generative Adversarial Networks (GAN): summary

[ Given the system below, we train it based on the objective function.
J The objective function is derived based on game theory.
- Generator tries to make a real like fake data to deceive the discriminator
- Discriminator tries not to be deceived by the generator
1 In this manner, generator learns how to make a sample close to real data.
1 It is about how to define the objective function and whether it converges to an

optimum solution.
Real loss i
Discriminator !
Fake loss i

Without chaining
weights in discriminator

Random

SR -
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Applications



Explosive growth of the popularity of GAN

29
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Total number of papers

Cumulative number of named GAN papers by month
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https://deephunt.in/the-gan-z00-79597dc8c347



High resolution image generation

 https://arxiv.org/pdf/1703.10717.pdf (BGAN)
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https://arxiv.org/pdf/1703.10717.pdf

Text to image

d https://arxiv.org/pdf/1710.10916.pdf (StackGAN)

A small bird A small yellow  This small bird

The bird is A bird witha This small with varying bird with a has a white
Teii Thisbirdisred shortand medium orange  black bird has  shades of black crown breast, light
descrintion and brown in stubby with bill white body  a short,slightly  brown with and a short grey head, and
P color, with a yellow on its gray wingsand curved billand  white underthe  black pointed black wings
stubby beak body webbed feet long legs eyes beak and tail
64x64
GAN-INT-CLS

128x128
GAWWN
256x256

StackGAN-v1 ‘ :
‘\
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https://arxiv.org/pdf/1710.10916.pdf

Style transfer

 https://egithub.com/junyanz/CycleGAN

apple — orange

-

summer Yosemite — winter Yosemite

32 orange — apple


http://bamos.github.io/2016/08/09/deep-completion/

Image Completion with Deep Learning in TensorFlow

1 http://bamos.github.io/2016/08/09/deep-completion/
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http://bamos.github.io/2016/08/09/deep-completion/

lmage2Vec

L https://arxiv.org/pdf/1511.06434.pdf

H

A

A->C = B->D
C-A=D-B
C-A+B=D

_ man woman
without glasses  \jthout glasses <
/I man man woman woman
/ with glasses without glasses  without glasses with glasses

: . man woman
;o with glasses with glasses
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https://arxiv.org/pdf/1511.06434.pdf

Deep Feature Interpolation

 https://arxiv.org/pdf/1611.05507.pdf
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https://arxiv.org/pdf/1611.05507.pdf
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V(G) when D is fixed

P
KL(P||Q)= ) Plog—
pdata(x) :|_|_ E y )|:|0 pg (X) :l Z Q

Pdata (X) + pg (X) Pdata (X) + pg (X) 1

minV (6)=E,. pdmu{loa
ISD(P Q)= KL(P| M)+%KL(QII M)

V(G)=V(G)+log(4)—log(4)
=—log(4)+E,_,. »[10g DX)]+E,_, ,[logd—D(x))]+log(4)

= —10g(4) + Y Pyua () 10g(D* (X)) +109(2) + 3 p, (X)log(L— D*(x)) +log(2)

Py (X)

log(2
pdata (X) + pg (X) ' Og( )

—_ pdata (X)
=—10g(4) + D Pgara (¥) l0G o (0 + P, () +10g(2) + 2 py () log

Paata T P Paata + P
=—|og(4)+KL(pdatan = 9]+KL(pgn - ]

— —log(4) +23SD(Pes || P, )
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