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Practical Machine Learning

Dr. Suyong Eum

Lecture 12

Generative Models: Variational Auto Encoder (VAE)

and Generative Adversarial Networks (GAN)



2

Reinforcement 
Learning

Supervised 
Learning

Unsupervised 
Learning

 LCR (week2)
 SVM (week5)
 CNN (week8)
 RNN (week10)

 GMM (week3)
 HMM (week4)
 PCA (week6)
 VAE (week12)
 GAN (week12)

 DQN (week14)
 PG (week14)

Where we are
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 The basic concept of generative models

 Two generative models:
1) Variational Auto Encoder (VAE)
2) Generative Adversarial Networks (GAN)

 Some applications you may be interested

You are going to learn
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What are Generative models?

 There are two types of models:
1) Discriminative models
2) Generative models

Determinative model, e.g., SVM Generative model, e.g, GMM
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 Literally speaking, a sample can be generated from generative models.
- Of course, the model needs to be trained in advance to generate such a 

sample which you are interested.

Each data point
has 64 dimension

Project the data points in
2 dimension

e.g., GMM

Basic operation
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 Literally speaking, a sample can be generated from generative models.
- Of course, the model needs to be trained in advance to generate such a 

sample which you are interested.

Each data point
has 64 dimension

Project the data point in
2 dimension

8

8

64 dimensions

a sample 
can be 

generated

 We can generate a new image which 
corresponds to the sample.

 It is NOT one of training data points!

e.g., GMM

Basic operation
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Variational AutoEncoder (VAE)
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Idea of VAE

Each data point
has 64 dimension

Project the data point in
2 dimension

8

8

64 dimensions

a sample 
can be 

generated

 We can generate a new image which 
corresponds to the sample.

 It is NOT one of training data points!

 To build a method which does the following procedure systematically.
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Idea of VAE

 Assuming that there is a complex model parameterized with “θ”
 The model generates data {x(1), x(2), … , x(N)} given a latent variable “z”: pθ(x|z) 

 Also, the model maps data set into the latent space:  pθ(z|x) 

)|x( )((i) izp

Data space (x)

)x|( (i))(izpIt is intractable

Data space (x)

a sample

Latent space (z)
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Idea of VAE

 This Intractability is well known, which can be handled with 1) Markov Chain Monte Carlos (MCMC) 
and 2) Variational Inference (VI).

 VAE uses the idea of Variational Inference and so the term “Variational” is in the name.

)|x( )((i) izp

Data space (x)

)x|( (i))(izpIt is intractable

Data space (x)

a sample

Latent space (z)
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 Auto Encoder is a neural network which reproduces its input

Encoder Decoder

)|x( )((i) izp

x x

Data space (x) Data space (x)Latent space (z)

)x|( (i))(izp

Approximate the function “p” using a neural network
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 Auto Encoder is a neural network which reproduces its input

Encoder Decoder

)|x( )((i) izp

x x

Data space (x) Data space (x)Latent space (z)

)x|( (i))(izp

)x|( (i))(izq

approximation

 Assuming qφ() as Gaussian distribution

Approximate the function “p” using a neural network
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 Auto Encoder is a neural network which reproduces its input

2 dimensions

x x

Data space (x) Data space (x)Latent space (z)

Encoder Decoder

)|x( )((i) izp)x|( (i))(izq

Approximate the function “p” using a neural network
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VAE model
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qφ(z|x) ~ N(μ, σ2)

pθ(x|z) ~ N(μ, σ2) or Bernoulli

pθ(z) ~N(0, 1)
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 How can we train the network to obtain the parameter φ and θ ?

- To train the neural network, a loss function is necessary. Then, the parameter “φ and θ” can be 
calculated through a backpropagation. 

 Let’s derive the loss function from the likelihood function pθ(x)
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))x|(||)x|(()x;,()x(log (i)(i)(i)(i) zpzqDLp KL   

 Since DKL ≥0, “L” is the lower bound of the likelihood 
function, which is called “ELBO” (Evidence Lower Bound)

A loss function for AutoEncoder

(log) likelihood 

Likelihood function showing the probability 
that given batch data set occur with the 
parameter θ in the neural network.

 Kullback-Leibnitz divergence showing how difference 
between two posterior distributions: true posterior 
p(z|x) and its approximate posterior q(z|x)

 This term is intractable because of p(z|x).
 However, we know DKL ≥0.
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Proof: If you are interested…
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 By maximizing “L”, we can maximize the likelihood function as well
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A loss function for AutoEncoder
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 qφ(z|x) ~ N(μ, σ2)
 pθ(z) ~ N(0, I)
 J: dimension of z

Auto-Encoding Variational Bayes (appendix B: 
derivation) https://arxiv.org/pdf/1312.6114.pdf

 It can be computed in a closed form
 pθ(x|z) ~ N(μ, σ2) or Bernoulli
 D: dimension of x

|ˆ|min xx 

A loss function for AutoEncoder

 By maximizing “L”, we can maximize the likelihood function as well,
 In other words, the most likely model (pθ and pφ), which generates the observed data, 

can be obtained by maximizing the function below. 

https://arxiv.org/pdf/1312.6114.pdf
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Variational Auto Encoder (VAE): summary

z1

z2

 A generative model based on a neural network (AutoEncoder)
 Its loss function is derived based on variational inference approach (Variational)
 The loss function calculates the error used to train Auto Encoder through backpropagation

- That is the reason why it is called “Variational AutoEncoder” (VAE).
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Generative Adversarial Networks (GAN)

https://arxiv.org/pdf/1701.00160.pdf
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What is the motivation of GAN instead of VAE? 

 In VAE, we design a latent space which maps to a data space.
 Then, a latent variable in the space is used to generate a data sample.
 However, actually we are interested in not the latent space but a sample itself.
 Then, why do we generate samples directly without the latent space estimation?

https://arxiv.org/pdf/1701.00160.pdf



22

How does GAN work? 

Generator
(Counterfeiter)

Discriminator
(Police)

 GAN: Generative Adversarial Network
 Based on game theory to train the system which directly generates a sample
 Adversarial: 

‘GAN framework can naturally be analyzed with the tools of game theory, we call GANs 

“adversarial”.’    - Ian Goodfellow

Real or Fake

Making a fake money

https://arxiv.org/pdf/1701.00160.pdf
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)))]((1[log()]([log),(maxmin )(~)(~ zGDExDEGDV zpzxpx
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Theory: formulation of an optimization problem

 Expectation that discriminator (D) tells 
real is real (D successes)

 Training discriminator to maximize it

 Expectation that D tells fake is real
(D fails)

 Training generator to minimize a fake

notation description

x ~ pdata(x) Real data sample

z ~ pz(z) A random number from N(0, 1)

G(z) Fake data sample

D(x)=1 Probability of discriminator (D) telling that given real data “x” is real

D(G(z))=0 Probability of discriminator (D) telling that given fake data “G(z)” is fake

1 – D(G(z)) Probability of discriminator (D) telling that given fake data “G(z)” is real
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Theory: illustration

Real data 
dist.

Fake data 
dist.Discriminator

 Generator keeps trained to generate a fake one similar to real and so finally Discriminator 
cannot tell a fake from a real => its probability becomes 0.5.

0.5

https://arxiv.org/abs/1406.2661
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Theory: its global optimal solution pg=pdata
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Theory: its global optimal solution pg=pdata

 With the optimum value of D*, lower bound of V(G) is
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 JSD: Jensen Shannon divergence
- A method of measuring the similarity between two probability distribution.
- 0 ≤ JSD(p|q) ≤1

Backup 
slide

This is the minimum value of V(G) when JSD=0 (pg=pdata)
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Generative Adversarial Networks (GAN): summary

 Given the system below, we train it based on the objective function.  
 The objective function is derived based on game theory.

- Generator tries to make a real like fake data to deceive the discriminator
- Discriminator tries not to be deceived by the generator

 In this manner, generator learns how to make a sample close to real data.
 It is about how to define the objective function and whether it converges to an 

optimum solution.
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Applications
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Explosive growth of the popularity of GAN

https://deephunt.in/the-gan-zoo-79597dc8c347
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High resolution image generation

 https://arxiv.org/pdf/1703.10717.pdf (BGAN)

https://arxiv.org/pdf/1703.10717.pdf
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Text to image

 https://arxiv.org/pdf/1710.10916.pdf (StackGAN)

https://arxiv.org/pdf/1710.10916.pdf
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Style transfer

 https://github.com/junyanz/CycleGAN

http://bamos.github.io/2016/08/09/deep-completion/
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Image Completion with Deep Learning in TensorFlow

 http://bamos.github.io/2016/08/09/deep-completion/

http://bamos.github.io/2016/08/09/deep-completion/
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Image2Vec

 https://arxiv.org/pdf/1511.06434.pdf

A B

C D

A->C = B->D
C-A = D-B
C-A+B=D

+ =

https://arxiv.org/pdf/1511.06434.pdf
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Deep Feature Interpolation 

 https://arxiv.org/pdf/1611.05507.pdf

https://arxiv.org/pdf/1611.05507.pdf
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Backup Slides
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V(G) when D is fixed 

)4log()4log()()(  GVGV































)()(

)(
log

)()(

)(
log)(min )(~)(~

xpxp

xp
E

xpxp

xp
EGV

gdata

g

xpx

gdata

data
xpx

G gdata








 







 


2
||

2
||)4log(

gdata

g

gdata

data

pp
pKL

pp
pKL

)||(
2

1
)||(

2

1
)||( MQKLMPKLQPJSD 

)||(2)4log( gdata ppJSD

)2log())(*1log()()2log())(*log()()4log(   xDxpxDxp gdata


Q

P
PQPKL log)||(

)2log(
)()(

)(
log)()2log(

)()(

)(
log)()4log( 





 

xpxp

xp
xp

xpxp

xp
xp

gdata

g

g

gdata

data
data

)4log())](1[log()]([log)4log( )(~)(~  xDExDE xpxxpx qdata


