

# **Practical Machine Learning**

# Workshop 2 Principal Components Analysis (PCA) & Support Vector Machine (SVM)

Dr. Suyong Eum



#### **Principal Component Analysis (PCA)**

A statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.

A statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.



A statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.

8







A statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.

8







A statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.





□ How to select a principal component?

- One that captures the largest variance of the data points.

#### U Why?

- Because we want to clearly see how each data point is related (close) each other.
- Then, which one (PC1 or PC2) is better?





Distance to data points from the mean along the axis of " $v_1$ " =  $[-2\sqrt{2}, -\sqrt{2}, 0, 0, \sqrt{2}, 2\sqrt{2}]$  variance = 4

$$\operatorname{var} = \frac{\sum (x - \mu)^2}{N - 1}$$



Distance to data points from the mean along the axis of " $v_1$ " =  $[-2\sqrt{2}, -\sqrt{2}, 0, 0, \sqrt{2}, 2\sqrt{2}]$  variance = 4

Distance to data points from the mean along the axis of " $v_2$ " =  $[0, 0, -\sqrt{2}, \sqrt{2}, 0, 0]$  variance = 0.8













1) Find the covariance matrix of data points.

| >> x<br>x =                                  |                  |
|----------------------------------------------|------------------|
| -2 -2<br>-1 -1<br>1 -1<br>-1 1<br>1 1<br>2 2 |                  |
| >> cov(x)<br>ans =                           |                  |
| 2.4000<br>1.6000                             | 1.6000<br>2.4000 |

- 1) Find the covariance matrix of data points.
- 2) Obtain the eigen values and vectors of the covariance matrix: eigen decomposition.

| >> x<br>x =                                  |                  |
|----------------------------------------------|------------------|
| -2 -2<br>-1 -1<br>1 -1<br>-1 1<br>1 1<br>2 2 |                  |
| >> cov(x)<br>ans =                           |                  |
| 2.4000<br>1.6000                             | 1.6000<br>2.4000 |

| >> [vec, v<br>vec = | <pre>val] = eig(cov(x))</pre> |  |  |  |
|---------------------|-------------------------------|--|--|--|
| -0.70711<br>0.70711 | 0.70711<br>0.70711            |  |  |  |
| val =               |                               |  |  |  |
| Diagonal Matrix     |                               |  |  |  |
| 0.8000              | 0 0<br>0 4.00000              |  |  |  |

- 1) Find the covariance matrix of data points.
- 2) Obtain the eigen values and vectors of the covariance matrix: eigen decomposition.
- 3) Sort the eigen vectors in descending order in terms of their corresponding eigen values.
  - an eigen vector with the largest eigen value becomes the first principal component.







Actually, there is a more convenient way of doing it.
 It is called "Singular Value Decomposition" or SVD.

#### **Eigen Value decomposition**

| $X^{T}X =$ | $V\Lambda V^{T}$ |
|------------|------------------|
|------------|------------------|

| >> x<br>x =    | <pre>&gt;&gt; [vec, val] = eig(cov(x)) vec =</pre>       |
|----------------|----------------------------------------------------------|
| -2 -2<br>-1 -1 | -0.70711 0.70711<br>0.70711 0.70711                      |
| 1 -1<br>-1 1   | val =                                                    |
| 1 1            | Diagonal Matrix                                          |
| 2 2            | 0.80000 0                                                |
| >> cov(x)      | 0 4.00000                                                |
| ans =          | <pre>&gt;&gt; [vec, val]=eig(transpose(x)*x) vec =</pre> |
| 2.4000 1.6000  |                                                          |
| 1.6000 2.4000  | -0.70711 0.70711<br>0.70711 0.70711                      |
|                | val =                                                    |
|                | Diagonal Matrix                                          |
|                | 4.0000 0 0 20.0000                                       |

Actually, there is a more convenient way of doing it.
 It is called "Singular Value Decomposition" or SVD.

Eigen Value decomposition

| $X^{\mathrm{T}}X = V\Lambda V^{\mathrm{T}}$ |
|---------------------------------------------|
|---------------------------------------------|

| >> x<br>x =                                               | <pre>&gt;&gt; [vec, val] = eig(cov(x)) vec =</pre>                                        |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------|
| -2 -2<br>-1 -1<br>1 -1<br>-1 1<br>1 1<br>2 2<br>>> cov(x) | -0.70711 0.70711<br>0.70711 0.70711<br>val =<br>Diagonal Matrix<br>0.80000 0<br>0 4.00000 |
| ans =<br>2.4000 1.6000<br>1.6000 2.4000                   | <pre>&gt;&gt; [vec, val]=eig(transpose(x)*x) vec =     -0.70711    0.70711</pre>          |
| 1.0000 2.4000                                             | 0.70711 0.70711<br>val =<br>Diagonal Matrix                                               |
|                                                           | 4.0000 20 0000 7                                                                          |

 $\mathbf{X} =$ 

Actually, there is a more convenient way of doing it.
 It is called "Singular Value Decomposition" or SVD.



|--|

| >> x<br>x =                    | <pre>&gt;&gt; [vec, val] = eig(cov(x)) vec =</pre>       |
|--------------------------------|----------------------------------------------------------|
| -2 -2<br>-1 -1<br>1 -1         | -0.70711 0.70711<br>0.70711 0.70711<br>val =             |
| -1 1<br>1 1<br>2 2             | Diagonal Matrix                                          |
| >> cov(x)                      | 0.80000 0<br>0 4.00000                                   |
| ans =                          | <pre>&gt;&gt; [vec, val]=eig(transpose(x)*x) vec =</pre> |
| 2.4000 1.6000<br>1.6000 2.4000 | -0.70711 0.70711<br>0.70711 0.70711                      |
|                                | val =                                                    |
|                                | Diagonal Matrix                                          |
|                                | 4.0000 0 20.0000                                         |

 $\mathbf{X} =$ 

 $\mathbf{X}^{\mathrm{T}}\mathbf{X} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathrm{T}})^{\mathrm{T}}(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathrm{T}})$ 

Actually, there is a more convenient way of doing it.
 It is called "Singular Value Decomposition" or SVD.



| >> x<br>x =                                  | <pre>&gt;&gt; [vec, val] = eig(cov(x)) vec =</pre>                                        |
|----------------------------------------------|-------------------------------------------------------------------------------------------|
| -2 -2<br>-1 -1<br>1 -1<br>-1 1<br>1 1<br>2 2 | -0.70711 0.70711<br>0.70711 0.70711<br>val =<br>Diagonal Matrix<br>0.80000 0<br>0 4.00000 |
| ans =                                        | <pre>&gt;&gt; [vec, val]=eig(transpose(x)*x) vec =</pre>                                  |
| 2.4000 1.6000<br>1.6000 2.4000               | -0.70711 0.70711<br>0.70711 0.70711                                                       |
|                                              | val =                                                                                     |
|                                              | 0 20.0000                                                                                 |

 $X = U\Sigma V^{T}$ 

```
X^{T}X = (U\Sigma V^{T})^{T}(U\Sigma V^{T})= V\Sigma^{T}U^{T}U\Sigma V^{T}= V\Sigma^{2}V^{T}
```

Actually, there is a more convenient way of doing it.
 It is called "Singular Value Decomposition" or SVD.



| >> x<br>x =                                               | <pre>&gt;&gt; [vec, val] = eig(cov(x)) vec =</pre>                                        |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------|
| -2 -2<br>-1 -1<br>1 -1<br>-1 1<br>1 1<br>2 2<br>>> cov(x) | -0.70711 0.70711<br>0.70711 0.70711<br>val =<br>Diagonal Matrix<br>0.80000 0<br>0 4.00000 |
| ans = 2 4000 1 6000                                       | <pre>&gt;&gt; [vec, val]=eig(transpose(x)*x) vec =</pre>                                  |
| 1.6000 2.4000                                             | -0.70711 0.70711<br>0.70711 0.70711<br>val =                                              |
|                                                           | Diagonal Matrix<br>4.0000 0                                                               |

Singular Value Decomposition (SVD)

 $X^{T}X = (U\Sigma V^{T})^{T}(U\Sigma V^{T})$  $= V\Sigma^{T}U^{T}U\Sigma V^{T}$  $= V\Sigma^{2}V^{T} \qquad \Lambda = \Sigma^{2}$  $\Lambda = \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{n} \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \sqrt{\lambda_{1}} & 0 \\ 0 & \sqrt{\lambda_{n}} \end{bmatrix}$ 

**Eigen value** 

Singular value

Actually, there is a more convenient way of doing it.
 It is called "Singular Value Decomposition" or SVD.



 $\mathbf{X} = \mathbf{x}$ 



#### Now we know how to find the principal components





2 dimension data points can be represented into one dimension space  $(v_1)$ 

#### **Dimension reduction**





2 dimension data points can be represented into one dimension space  $(v_1)$ 





#### **Dimension reduction**





| >> [U,S,V]=<br>U =              | svd(x)                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -0.63246<br>-0.31623<br>0.00000 | 0.00000<br>-0.00000<br>-0.70711                                                                                                                                                                                                                                        | 0.30819<br>-0.63635<br>0.50000                                                                                                                                                                                                                                           | -0.30819<br>0.63635<br>0.50000                                       | 0.28637<br>0.13426<br>0.00000                                                                                                                                                                                                                                                                                                                                                                           | 0.57274<br>0.26851<br>0.00000                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -0.00000<br>0.31623<br>0.63246  | 0.70711<br>0.00000<br>0.00000                                                                                                                                                                                                                                          | 0.50000<br>-0.00399<br>-0.00799                                                                                                                                                                                                                                          | 0.50000<br>0.00399<br>0.00799                                        | -0.00000<br>0.94140<br>-0.11720                                                                                                                                                                                                                                                                                                                                                                         | -0.00000<br>-0.11720<br>0.76560                                                                                                                                                                                                                                                                                                                                                                                                                           |
| S =                             |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Diagonal Ma                     | trix                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.4721                          | 0<br>2.0000                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                          |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ⊖<br>⊙                          | 0<br>0                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Θ                               | 0                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                          |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Θ                               | 0                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                          |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| V =                             |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.70711<br>0.70711              | -0.70711<br>0.70711                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                          |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 | <pre>&gt;&gt; [U, S, V]=<br/>U =<br/>-0.63246<br/>-0.31623<br/>0.00000<br/>-0.00000<br/>0.31623<br/>0.63246<br/>S =<br/>Diagonal Ma<br/>4.4721<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</pre> | <pre>&gt;&gt; [U,S,V]=svd(x)<br/>U =<br/>-0.63246      0.00000<br/>-0.31623      -0.00000<br/>0.00000      -0.70711<br/>-0.00000      0.70711<br/>0.31623      0.00000<br/>0.63246      0.00000<br/>S =<br/>Diagonal Matrix<br/>4.4721         0<br/>0      2.0000</pre> | <pre>&gt;&gt; [U,S,V]=svd(x)<br/>U =<br/>-0.63246      0.00000</pre> | <pre>&gt;&gt; [U,S,V]=svd(x)<br/>U =<br/>-0.63246 0.00000 0.30819 -0.30819<br/>-0.31623 -0.00000 -0.63635 0.63635<br/>0.00000 -0.70711 0.50000 0.50000<br/>-0.00000 0.70711 0.50000 0.50000<br/>0.31623 0.00000 -0.00399 0.00399<br/>0.63246 0.00000 -0.00799 0.00799<br/>S =<br/>Diagonal Matrix<br/>4.4721 0<br/>0 2.0000<br/>0 0<br/>0 0<br/>0 0<br/>0 0<br/>0 0<br/>0 0<br/>0 0<br/>0 0<br/>0</pre> | <pre>&gt;&gt; [U,S,V]=svd(x)<br/>U =<br/>-0.63246 0.00000 0.30819 -0.30819 0.28637<br/>-0.31623 -0.00000 -0.63635 0.63635 0.13426<br/>0.00000 0.70711 0.50000 0.50000 0.00000<br/>-0.000000 0.70711 0.50000 0.50000 -0.00000<br/>0.31623 0.00000 -0.00399 0.00399 0.94140<br/>0.63246 0.00000 -0.00799 0.00799 -0.11720<br/>S =<br/>Diagonal Matrix<br/>4.4721 0<br/>0 2.0000<br/>0 0<br/>0 0<br/>0 0<br/>0 0<br/>0 0<br/>0 0<br/>0 0<br/>0 0<br/>0</pre> |



| >> [U, S, V]=<br>U = | svd(x)                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -0.63246             | 0.00000                                                                                                                                                                                                                                                                | 0.30819                                                                                                                                                                                                                                                                                             | -0.30819                                                                                                                                                                                                                                                                                                                                                   | 0.28637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.57274                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.00000              | -0 70711                                                                                                                                                                                                                                                               | 0.50000                                                                                                                                                                                                                                                                                             | 0.50000                                                                                                                                                                                                                                                                                                                                                    | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -0.00000             | 0.70711                                                                                                                                                                                                                                                                | 0.50000                                                                                                                                                                                                                                                                                             | 0.50000                                                                                                                                                                                                                                                                                                                                                    | -0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.31623              | 0.00000                                                                                                                                                                                                                                                                | -0.00399                                                                                                                                                                                                                                                                                            | 0.00399                                                                                                                                                                                                                                                                                                                                                    | 0.94140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.11720                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.63246              | 0.00000                                                                                                                                                                                                                                                                | -0.00799                                                                                                                                                                                                                                                                                            | 0.00799                                                                                                                                                                                                                                                                                                                                                    | -0.11720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.76560                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| S =                  |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Diagonal Ma          | trix                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4,4721               | Θ                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Θ                    | 2.0000                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0                    | Θ                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Θ                    | Θ                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Θ                    | Θ                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0                    | Θ                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| v =                  |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.70711              | -0.70711                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.70711              | 0.70711                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | <pre>&gt;&gt; [U, S, V]=<br/>U =<br/>-0.63246<br/>-0.31623<br/>0.00000<br/>-0.00000<br/>0.31623<br/>0.63246<br/>S =<br/>Diagonal Ma<br/>4.4721<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</pre> | <pre>&gt;&gt; [U,S,V]=svd(x)<br/>U =<br/>-0.63246        0.00000<br/>-0.31623       -0.00000<br/>0.00000       -0.70711<br/>-0.00000       0.70711<br/>0.31623        0.00000<br/>0.63246        0.00000<br/>0.63246        0.00000<br/>S =<br/>Diagonal Matrix<br/>4.4721            0<br/>0</pre> | <pre>&gt;&gt; [U,S,V]=svd(x)<br/>U =<br/>-0.63246      0.00000      0.30819<br/>-0.31623      -0.00000      -0.63635<br/>0.00000      0.70711      0.50000<br/>0.31623      0.00000      -0.00399<br/>0.63246      0.00000      -0.00399<br/>0.63246      0.00000      -0.00799<br/>S =<br/>Diagonal Matrix<br/>4.4721           0<br/>0      2.0000</pre> | <pre>&gt;&gt; [U,S,V]=svd(x)<br/>U =<br/>-0.63246 0.00000 0.30819 -0.30819<br/>-0.31623 -0.00000 -0.63635 0.63635<br/>0.00000 0.70711 0.50000 0.50000<br/>-0.00000 0.70711 0.50000 0.50000<br/>0.31623 0.00000 -0.00399 0.00399<br/>0.63246 0.00000 -0.00799 0.00799<br/>S =<br/>Diagonal Matrix<br/>4.4721 0<br/>0 0 2.0000<br/>0 0 0<br/>0 0 0 0<br/>0 0 0<br/>0 0 0 0 0<br/>0 0 0 0 0 0<br/>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre> | <pre>&gt;&gt; [U,S,V]=svd(x)<br/>U =<br/>-0.63246 0.00000 0.30819 -0.30819 0.28637<br/>-0.31623 -0.00000 -0.63635 0.63635 0.13426<br/>0.00000 0.70711 0.50000 0.50000 -0.00000<br/>-0.00000 0.70711 0.50000 0.50000 -0.00000<br/>0.31623 0.00000 -0.00399 0.00399 0.94140<br/>0.63246 0.00000 -0.00799 0.00799 -0.11720<br/>S =<br/>Diagonal Matrix<br/>4.4721 0<br/>0 2.0000<br/>0 0<br/>0 0<br/>0 0<br/>0 0<br/>0 0<br/>0 0<br/>0 0<br/>0 0<br/>0</pre> |

30





#### How to use PCA for machine learning?





A digit number with 64 dimension can be shown in 2 dimension space ( $v_1$  and  $v_2$ ).

Each digit number has 8 by 8 = 64 dimensions.
 After SVD, the first two principal components are selected, and the data

points with 64 dimension are plotted in two dimension.



## **Support Vector Machine (SVM)**

# <sup>36</sup>Which one is better for classification?






## <sup>37</sup>Terminology used in this lecture



$$\mathbf{x}^{c} = \mathbf{x}^{b} + \| r \| \frac{\mathbf{w}}{\| \mathbf{w} \|}$$



## <sup>39</sup>Margin distance





# <sup>₄</sup>Margin distance



**Let's multiply**  $w^T$  and add  $w_0$  in both sides.

$$\mathbf{w}^{T}\mathbf{x}^{c} + w_{0} = \mathbf{w}^{T}\mathbf{x}^{b} + w_{0} + \mathbf{w}^{T} || r || \frac{\mathbf{w}}{||\mathbf{w}||}$$



## <sup>₄</sup>Margin distance



**Let's multiply**  $w^T$  and add  $w_0$  in both sides.

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}^{c} + w_{0} = \mathbf{w}^{\mathrm{T}}\mathbf{x}^{b} + w_{0} + \mathbf{w}^{\mathrm{T}} \parallel r \parallel \frac{\mathbf{w}}{\parallel \mathbf{w} \parallel}$$
$$\mathbf{y}(\mathbf{x}^{c}) = \mathbf{w}^{\mathrm{T}} \parallel r \parallel \frac{\mathbf{w}}{\parallel \mathbf{w} \parallel}$$



#### <sup>₄</sup>? Margin distance



**Let's multiply**  $w^T$  and add  $w_0$  in both sides.

$$\mathbf{w}^{T}\mathbf{x}^{c} + w_{0} = \mathbf{w}^{T}\mathbf{x}^{b} + w_{0} + \mathbf{w}^{T} || r || \frac{\mathbf{w}}{|| \mathbf{w} ||}$$
$$\mathbf{y}(\mathbf{x}^{c}) = \mathbf{w}^{T} || r || \frac{\mathbf{w}}{|| \mathbf{w} ||}$$
$$|| r || = \frac{\mathbf{y}(\mathbf{x}^{c})}{|| \mathbf{w} ||}$$



## <sup>4</sup>Margin distance

 $||r|| = \frac{1}{||w||}$ 



**Let's multiply**  $w^T$  and add  $w_0$  in both sides.

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}^{c} + w_{0} = \mathbf{w}^{\mathrm{T}}\mathbf{x}^{b} + w_{0} + \mathbf{w}^{\mathrm{T}} \parallel r \parallel \frac{\mathbf{w}}{\parallel \mathbf{w} \parallel}$$
$$\mathbf{y}(\mathbf{x}^{c}) = \mathbf{w}^{\mathrm{T}} \parallel r \parallel \frac{\mathbf{w}}{\parallel \mathbf{w} \parallel}$$
$$\parallel r \parallel = \frac{\mathbf{y}(\mathbf{x}^{c})}{\parallel \mathbf{w} \parallel}$$
Let's say

 $|y(x^{c})|=1$ 



□ Finding a decision boundary which maximizes the margin.

$$\max \parallel r \parallel = \frac{1}{\parallel \mathbf{w} \parallel}$$



### <sup>4</sup>Problem formulation

□ Finding a decision boundary which maximizes the margin.

$$\max \parallel r \parallel = \frac{1}{\parallel w \parallel}$$

s.t.

 $t_n y(\mathbf{x}_n) > 0$   $\longrightarrow$  Every data points are classified correctly.

$$\begin{cases} t_n = +1, & y(x_n) > 0 \\ t_n = -1, & y(x_n) < 0 \end{cases}$$



#### <sup>4</sup>Problem formulation

Let's make it a quadratic programming problem.

$$\max \frac{1}{\|\mathbf{w}\|}$$
  
s.t.  $t_n y(\mathbf{x}_n) > 0, \quad \forall n$ 

#### □ Finally















Soft margin SVM



□ Remember the constraint below?  $t_n(\mathbf{w}^T\mathbf{x}_n + w_0) \ge 1, \quad \forall n$ 



□ Remember the constraint below?  $t_n(\mathbf{w}^T\mathbf{x}_n + w_0) \ge 1, \quad \forall n$ 

For the data points which are non-separable, we relax the constraint:

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + w_0) \ge 1 - \varepsilon_n, \quad \forall n \quad \varepsilon_n \ge 0$$



- □ Remember the constraint below?  $t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + w_0) \ge 1, \quad \forall n$
- □ For the data points which are non-separable, we relax the constraint:

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + w_0) \ge 1 - \varepsilon_n, \quad \forall n \quad \varepsilon_n \ge 0$$

It says that the distance between a data point and the decision boundary is allowed to be less than 1.



- □ Remember the constraint below?  $t_n(\mathbf{w}^T\mathbf{x}_n + w_0) \ge 1, \quad \forall n$
- For the data points which are non-separable, we relax the constraint:

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + w_0) \ge 1 - \varepsilon_n, \quad \forall n \quad \varepsilon_n \ge 0$$

- It says that the distance between a data point and the decision boundary is allowed to be less than 1.
  - $\mathcal{E}_n$  is called slack variables.



□ Remember the constraint below?  $t_n(\mathbf{w}^T\mathbf{x}_n + w_0) \ge 1, \quad \forall n$ 

For the data points which are non-separable, we relax the constraint:

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + w_0) \ge 1 - \varepsilon_n, \quad \forall n \quad \varepsilon_n \ge 0$$

- It says that the distance between a data point and the decision boundary is allowed to be less than 1.
  - $\mathcal{E}_n$  is called slack variables.
  - **D** Question. Where is a data point when  $\varepsilon_n = 1$  ?



So we have the constraint below. How about the objective function?

$$t_n(\mathbf{w}^{\mathrm{T}}x_n + w_0) \ge 1 - \varepsilon_n, \quad \forall n \quad \varepsilon_n \ge 0$$



So we have the constraint below. How about the objective function?

$$t_n(\mathbf{w}^{\mathrm{T}}x_n + w_0) \ge 1 - \varepsilon_n, \quad \forall n \quad \varepsilon_n \ge 0$$

□ We want to minimize the slack.

$$\min\frac{1}{2}\|\mathbf{w}\|^2 + C\sum_n \varepsilon_n$$



So we have the constraint below. How about the objective function?

$$t_n(\mathbf{w}^{\mathrm{T}}x_n + w_0) \ge 1 - \varepsilon_n, \quad \forall n \quad \varepsilon_n \ge 0$$

□ We want to minimize the slack.

$$\min \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_n \varepsilon_n$$



- If "C" is small, the dominant factor is || w ||<sup>2</sup> / 2
   Prefer large margin
  - 2) May cause large # of misclassified data points.



So we have the constraint below. How about the objective function?

$$t_n(\mathbf{w}^{\mathrm{T}}x_n + w_0) \ge 1 - \varepsilon_n, \quad \forall n \quad \varepsilon_n \ge 0$$

□ We want to minimize the slack.

$$\min \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_n \varepsilon_n$$



- If "C" is small, the slack contributes more
   Prefer large margin
  - 2) May cause large # of misclassified data points.
- □ If "C" is large, the slack contributes less
  - 1) Prefer less # of misclassified data points.
  - 2) May cause small margin.



#### □ The formulation finally becomes

$$\min \frac{1}{2} \| \mathbf{w} \|^{2} + C \sum_{n} \varepsilon_{n}$$
  
s.t.  
$$t_{n} (\mathbf{w}^{\mathrm{T}} x_{n} + w_{0}) \ge 1 - \varepsilon_{n}, \forall n$$
  
$$\varepsilon_{n} \ge 0$$



1.0

#### Kernel trick





- They are the same problem.
- λ: Lagrange multipliers which corresponding to data points.
- t: label (-1 or 1)
- It looks complicated why we border to use dual problem???



 $\Box$  If data  $x_n$  are not linearly separable, what should we do?





 $\Box$  If data  $x_n$  are not linearly separable, what should we do?



## <sup>64</sup>Kernel trick

The idea of Kernel trick begins from here: to find the scalar values (the inner product of two vectors: z<sub>n</sub> and z<sub>m</sub>) and so we can formulate the quadratic problem which can be linearly separable.



#### <sup>65</sup>Kernel trick

Kernel function K() is a function which returns the scalar values (the inner product of two vectors:
 z<sub>n</sub> and z<sub>m</sub> in Z space) when the data points (x<sub>n</sub> and x<sub>m</sub> in X space) are given.

$$K(\mathbf{x}_n^T, \mathbf{x}_m) = \phi(\mathbf{x}_n^T)\phi(\mathbf{x}_m) = \mathbf{z}_n^T \mathbf{z}_m$$



 $Z_1$ 

#### Finally

□ With the Kernel function defined previously, we want to change the quadratic problem as follows:

- Because the Kernel function is a function of data points ( $x_n$  and  $x_m$ ) which we already have.

$$\min_{\lambda} L(\lambda) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \lambda_n$$

$$s.t. \quad \lambda \ge 0, \quad t^T \lambda = 0$$

$$\min_{\lambda} L(\lambda) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m \mathbf{K}(\mathbf{x}_n^T \mathbf{x}_m) - \sum_{n=1}^{N} \lambda_n$$

$$s.t. \quad \lambda \ge 0, \quad t^T \lambda = 0$$

Z space problem

X space problem

Z space problem can be formulated with data in X space

## <sup>6</sup>Polynomial kernel of degree 2



 $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}\mathbf{y})^2$ 

## <sup>6</sup>Polynomial kernel of degree 2



$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}\mathbf{y})^{2}$$
  
=  $((x_{1}, x_{2}) \cdot (y_{1}, y_{2}))^{2}$   
=  $(x_{1}y_{1} + x_{2}y_{2})^{2}$   
=  $x_{1}^{2}y_{1}^{2} + 2x_{1}x_{2}y_{1}y_{2} + x_{2}^{2}y_{2}^{2}$ 

## Polynomial kernel of degree 2



$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}\mathbf{y})^{2}$$
  
=  $((x_{1}, x_{2}) \cdot (y_{1}, y_{2}))^{2}$   
=  $(x_{1}y_{1} + x_{2}y_{2})^{2}$   
=  $x_{1}^{2}y_{1}^{2} + 2x_{1}x_{2}y_{1}y_{2} + x_{2}^{2}y_{2}^{2}$ 

## <sup>7</sup>Polynomial kernel of degree 2



$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}\mathbf{y})^{2}$$
  
=  $((x_{1}, x_{2}) \cdot (y_{1}, y_{2}))^{2}$   
=  $(x_{1}y_{1} + x_{2}y_{2})^{2}$   
=  $x_{1}^{2}y_{1}^{2} + 2x_{1}x_{2}y_{1}y_{2} + x_{2}^{2}y_{2}^{2}$ 

$$\phi(\mathbf{x})\phi(\mathbf{y}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \cdot (y_1^2, \sqrt{2}y_1y_2, y_2^2)$$

## <sup>7</sup>Polynomial kernel of degree 2



$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}\mathbf{y})^{2}$$
  
=  $((x_{1}, x_{2}) \cdot (y_{1}, y_{2}))^{2}$   
=  $(x_{1}y_{1} + x_{2}y_{2})^{2}$   
=  $x_{1}^{2}y_{1}^{2} + 2x_{1}x_{2}y_{1}y_{2} + x_{2}^{2}y_{2}^{2}$ 

$$\phi(\mathbf{x})\phi(\mathbf{y}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \cdot (y_1^2, \sqrt{2}y_1y_2, y_2^2)$$

$$= x_1^2 y_1^2 + 2x_1 x_2 y_1 y_2 + x_2^2 y_2^2$$

Mapping to 3-dimension

## Gaussian Kernel: derivation (inner product in the infinite z space)

$$K(\mathbf{x}_n, \mathbf{x}_m) = \exp\left(-\alpha ||\mathbf{x}_n - \mathbf{x}_m||^2\right)$$
# <sup>7</sup>Gaussian Kernel: derivation (inner product in the infinite z space)

$$K(\mathbf{x}_n, \mathbf{x}_m) = \exp\left(-\alpha ||\mathbf{x}_n - \mathbf{x}_m||^2\right)$$

$$= \exp\left(-\alpha x_{n}^{2}\right) \exp\left(-\alpha x_{m}^{2}\right) \exp\left(2\alpha x_{n} x_{m}\right)$$

# <sup>74</sup>Gaussian Kernel: derivation (inner product in the infinite z space)

$$K(\mathbf{x}_{n}, \mathbf{x}_{m}) = \exp\left(-\alpha || \mathbf{x}_{n} - \mathbf{x}_{m} ||^{2}\right)$$

$$= \exp\left(-\alpha \mathbf{x}_{n}^{2}\right) \exp\left(-\alpha \mathbf{x}_{m}^{2}\right) \exp\left(2\alpha \mathbf{x}_{n} \mathbf{x}_{m}\right)$$

$$= \exp\left(-\alpha \mathbf{x}_{n}^{2}\right) \exp\left(-\alpha \mathbf{x}_{m}^{2}\right) \exp\left(2\alpha \mathbf{x}_{n} \mathbf{x}_{m}\right)$$

$$= \exp\left(-\alpha \mathbf{x}_{n}^{2}\right) \exp\left(-\alpha \mathbf{x}_{m}^{2}\right) \sum_{k=0}^{\infty} \frac{(2\alpha)^{k} (\mathbf{x}_{n})^{k} (\mathbf{x}_{m})^{k}}{k!}$$
Taylor series expansion of an exponential function  

$$\exp(x) = \frac{x^{0}}{0!} + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

# Gaussian Kernel: derivation (inner product in the infinite z space)

$$K(\mathbf{x}_{n}, \mathbf{x}_{m}) = \exp\left(-\alpha || \mathbf{x}_{n} - \mathbf{x}_{m} ||^{2}\right)$$

$$= \exp\left(-\alpha \mathbf{x}_{n}^{2}\right) \exp\left(-\alpha \mathbf{x}_{m}^{2}\right) \exp\left(2\alpha \mathbf{x}_{n} \mathbf{x}_{m}\right)$$

$$= \exp\left(-\alpha \mathbf{x}_{n}^{2}\right) \exp\left(-\alpha \mathbf{x}_{m}^{2}\right) \sum_{k=0}^{\infty} \frac{(2\alpha)^{k} (\mathbf{x}_{n})^{k} (\mathbf{x}_{m})^{k}}{k!}$$

$$= \sum_{k=0}^{\infty} \sqrt{\frac{(2\alpha)^{k}}{k!}} \exp\left(-\alpha \mathbf{x}_{n}^{2}\right) (\mathbf{x}_{n})^{k} \sqrt{\frac{(2\alpha)^{k}}{k!}} \exp\left(-\alpha \mathbf{x}_{m}^{2}\right) (\mathbf{x}_{m})^{k}$$

# <sup>76</sup>Gaussian Kernel: derivation (inner product in the infinite z space)

$$K(\mathbf{x}_{n}, \mathbf{x}_{m}) = \exp\left(-\alpha || \mathbf{x}_{n} - \mathbf{x}_{m} ||^{2}\right)$$

$$= \exp\left(-\alpha \mathbf{x}_{n}^{2}\right) \exp\left(-\alpha \mathbf{x}_{m}^{2}\right) \exp\left(2\alpha \mathbf{x}_{n} \mathbf{x}_{m}\right)$$

$$= \exp\left(-\alpha \mathbf{x}_{n}^{2}\right) \exp\left(-\alpha \mathbf{x}_{m}^{2}\right) \exp\left(2\alpha \mathbf{x}_{n} \mathbf{x}_{m}\right)$$

$$= \exp\left(-\alpha \mathbf{x}_{n}^{2}\right) \exp\left(-\alpha \mathbf{x}_{m}^{2}\right) \sum_{k=0}^{\infty} \frac{(2\alpha)^{k} (\mathbf{x}_{n})^{k} (\mathbf{x}_{m})^{k}}{k!}$$

$$= \sum_{k=0}^{\infty} \sqrt{\frac{(2\alpha)^{k}}{k!}} \exp\left(-\alpha \mathbf{x}_{n}^{2}\right) (\mathbf{x}_{n})^{k} \sqrt{\frac{(2\alpha)^{k}}{k!}} \exp\left(-\alpha \mathbf{x}_{m}^{2}\right) (\mathbf{x}_{m})^{k}$$

# Gaussian Kernel: derivation (inner product in the infinite z space)

$$K(\mathbf{x}_{n}, \mathbf{x}_{m}) = \exp\left(-\alpha || \mathbf{x}_{n} - \mathbf{x}_{m} ||^{2}\right)$$

$$= \exp\left(-\alpha \mathbf{x}_{n}^{2}\right) \exp\left(-\alpha \mathbf{x}_{m}^{2}\right) \exp\left(2\alpha \mathbf{x}_{n} \mathbf{x}_{m}\right)$$

$$= \exp\left(-\alpha \mathbf{x}_{n}^{2}\right) \exp\left(-\alpha \mathbf{x}_{m}^{2}\right) \exp\left(2\alpha \mathbf{x}_{n} \mathbf{x}_{m}\right)$$

$$= \exp\left(-\alpha \mathbf{x}_{n}^{2}\right) \exp\left(-\alpha \mathbf{x}_{m}^{2}\right) \sum_{k=0}^{\infty} \frac{(2\alpha)^{k} (\mathbf{x}_{n})^{k} (\mathbf{x}_{m})^{k}}{k!}$$

$$= \sum_{k=0}^{\infty} \sqrt{\frac{(2\alpha)^{k}}{k!}} \exp\left(-\alpha \mathbf{x}_{n}^{2}\right) (\mathbf{x}_{n})^{k} \sqrt{\frac{(2\alpha)^{k}}{k!}} \exp\left(-\alpha \mathbf{x}_{m}^{2}\right) (\mathbf{x}_{m})^{k}$$

$$= \phi(\mathbf{x}_{n}) \phi(\mathbf{x}_{m})$$

Mapping to infinite-dimension !

# <sup>78</sup>Gaussian Kernel



http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex8/ex8.html

## **Hand-on Experience**

## <sup>8</sup>Colab: Google Colaboratory

□ A web base free google cloud service

Jupyter Notebook with Google Drive

□ You can even use GPU for free!

- Good but it provides the best effort service
  - You must save your things in your google drive or somewhere else.

Resource check

- !cat /proc/meminfo
- !cat /proc/cpuinfo
- !df -h

# <sup>8</sup>Colab: Principal Component Analysis (PCA)



#### Data loading: MNIST

#### MNIST data set

- <u>http://yann.lecun.com/exdb/mnist/</u>
- Training data
  - One single file (45M) which includes 60,000 hand digit images for training,
  - One single file (59K) which includes corresponding labels.
- Testing data
  - One single file (7.5M) which includes 10,000 hand digit images for testing,
  - One single file (9.8K) which includes corresponding labels.



#### Making your gdrive as a working directory

Defining a root directory where you mount your gdrive

from google.colab import drive
drive.mount('/gdrive/')

/gdrive/My Drive/Colab Notebooks/

Running time measurement

import datetime
before = datetime.datetime.now().timestamp()

•••

after = datetime.datetime.now().timestamp()
print( "Time taken:", after - before)

# <sup>84</sup>Colab: Support Vector Machine (SVM)



# <sup>8</sup>Colab: Feature extraction



### **Backup Slides**

# <sup>87</sup>Finally finally...

 $\min_{\lambda} L(\lambda) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m \lambda_n \lambda_m \mathbf{K}(\mathbf{x}_n^T \mathbf{x}_m) - \sum_{n=1}^{N} \lambda_n$ s.t.  $\lambda \ge 0$ ,  $t^T \lambda = 0$ 

$$\mathbf{w} = \sum_{z_n \in SV} \lambda_n t_n \mathbf{Z}_n \quad w_0 = t_n - \sum_{z_n \in SV} \lambda_n t_n z_n z_n = t_n - \sum_{z_n \in SV} \lambda_n t_n K(\mathbf{x}_n, \mathbf{x}_n)$$

$$\operatorname{sign}(\mathbf{w}^{\mathrm{T}}\mathbf{z} + w_{0})$$

$$\operatorname{sign}\left(\sum \lambda_{n} t_{n} \mathbf{z}_{n} \mathbf{z} + t_{n} - \sum_{z_{n} \in SV} \lambda_{n} t_{n} K(\mathbf{x}_{n}, \mathbf{x}_{n})\right)$$

$$\operatorname{sign}\left(\sum \lambda_{n} t_{n} K(\mathbf{x}_{n}, \mathbf{x}) + t_{n} - \sum \lambda_{n} t_{n} K(\mathbf{x}_{n}, \mathbf{x}_{n})\right)$$

Now you have a function, which classifies a data point in z space without mapping the data point to z space at all.

Do you see why it is called a trick?