

Practical Machine Learning

Workshop 1 Introduction to Machine Learning

Dr. Suyong Eum

Program for five workshops

Contents of the workshop	Time	Location
 Introduction to Machine Learning Overview of Machine Learning Topics + tools Discussion on the direction of the workshops during the semester 	10am – 11:30am October 12 : Friday	C棟4F C401: Graduate School of Information
 Support Vector Machine (SVM) with Principal Component Analysis (PCA) Lecture on SVM and PCA Hand-on experience: data dimension reduction and classification 	10am – 12:00am October 23 : Tuesday	Science and Technology
 Convolutional Neural Networks (CNN) Lecture on Neural Network and CNN Hand-on experience: Style transfer or Tiny ImageNet Challenge 	10am – 12:00am November 6 : Tuesday	
 Recurrent Neural Network (RNN) Lecture on RNN + LSTM + Seq-to-Seq and Attention mechanism Hand-on experience: Character level language model + TACOTRON ? 	10am – 12:00am November 20 :Tuesday	
 Reinforcement Learning (RL) Lecture on RL + DQN + PG Hand-on experience: CartPole game using OpenAl Gym 	10am – 12:00am December 4 : Tuesday	

www.suyongeum.com/MLWS

- □ Materials will be available from the website.
- □ You can leave messages or questions and so they can be shared by all people.
- □ Private questions can be sent to me directly.
 - <u>suyong@ist.osaka-u.ac.jp</u> (Dr. Suyong Eum)
 - <u>h-yang@ist.osaka-u.ac.jp</u> (Dr. Hua Yang)

Pre-requisite for the workshops

Good (?) Knowledge of Python

- All examples will be shown in python.
- Does anyone need python tutorials?
- Tutorialson demand
 - Python
 - Tensorflow
 - Google Cloud (virtual machine setup \$300 free account for one year !)
 - Web programming (flask Django)
- □ A little bit of mathematics
 - Try to avoid as much as I can during the workshops

1st Workshop Outline

- □ Machine learning and its short history
- □ A typical process in the operation of machine learning algorithms with an example
- □ What you can do after this course
- □ Some tools that you need to prepare until next workshop

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Machine Learning – Tom M. Mitchell, 1997

Learning is a process to understand an underlying process through a set of observations.

recognition

creation

History of Machine Learning

The perfect storm

<u>Data</u>

Computational power

<u>Algorithms</u>

(a) Standard Neural Net

(b) After applying dropout.

dropout

Backpropagation

Data

CPU vs GPU demo

Types of machine learning algorithms

Supervised Learning

□ Input + Output with Label

□ Supervised learning is learning from by a knowledgeable external supervisor.

Unsupervised Learning

Input + Output without LabelFeature Learning

x = f(x) $x \qquad f(x) \qquad x$

Question -> Question

Reinforcement Learning

Input + partial output with its quality: in some sense similar to supervised learning
 An action is rewarded/penalized to take a better action next time

<u>Carrot and stick</u>
 y = f(x)

A typical process in the operation of machine learning algorithms with an example

Components of machine learning

- □ Raw data (including label)
- □ Input (features: dimension of a data point)
- Hypothesis (a function approximating a target function)
- Output
- 🛛 Label

Male

Given data per person

- Height: 170cm
- Weight: 52kg
- Foot size: 25cm
- Hand size: 20cm
- Nose height: 1.5cm
- Eye size: 2.5cm
- Hair length: 5cm

Components	Notation	Description
Data	$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$	(a vector data, male/female)
Input	Х	$x_n = \{x_1, x_2, \dots, x_d\}$: d dimensions
Output	Y	Output data from hypothesis
Hypothesis	g: $X \rightarrow Y$	(hypothesis) A model
Target function	$f: X \rightarrow Y$	Unknown

□ Which features are important to tell that the given object is male or female? Assuming you chose two features and then you plot the data points

Given data per person

- Height: 170cm
 - Male
- Weight: 52kg
- Foot size: 25cm
- Hand size: 20cm
- Nose height: 1.5cm
- Eye size: 2.5cm
- Hair length: 5cm

 x_1 : height

An example: hypothesis (model) selection

x₁: height

 $ax_1 + bx_2 + c = 0$

An example: training the hypothesis to produce less error

x₂: weight

x₁: height

 \Box Random selection of W

Misclassified data points are found

❑ Update ₩ in order to correctly classify

the misclassified data points.

- How? : depending on learning algorithm
 - Neural network: backpropagation?
 - Linear algebra: perceptron algorithm

An example: training the hypothesis to produce less error

x₂: weight

x₁: height

- □ Random selection of *W*
- Misclassified data points are found
- ❑ Update ₩ in order to correctly classify

the misclassified data points.

- How? : depending on learning algorithm
 - Neural network: backpropagation?
 - Linear algebra: perceptron algorithm

An example: training the hypothesis to produce less error

x₁: height

- □ Random selection of *W*
- Misclassified data points are found
- ❑ Update ₩ in order to correctly classify
 - the misclassified data points.
 - How? : depending on learning algorithm
 - Neural network: backpropagation?
 - Linear algebra: perceptron algorithm

You are generally given one big training data set.
How to verify goodness of your model?

Occam's razor

$$y(x,w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^M w_j x^j$$

What you can do after this course

Large Scale Visual Recognition Challenge (ILSVRC)

- 1000 class objects
- around 1.4 million images

https://www.dsiac.org/resources/journals/dsiac/winter-2017-volume-4-number-1/real-time-situ-intelligent-video-analytics http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Image detection

	Μ	Mean Average		
2016		Precision		
Real-Time Detectors	Train	mAP		
100Hz DPM [31]	2007	16.0		
30Hz DPM [31]	2007	26.1		
Fast YOLO	2007+2012	52.7		
YOLO	2007+2012	63.4		
Less Than Real-Time				
Fastest DPM [38]	2007	30.4		
R-CNN Minus R [20]	2007	53.5		
Fast R-CNN [14]	2007+2012	70.0		
Faster R-CNN VGG-16[28]	2007+2012	73.2		
Faster R-CNN ZF [28]	2007+2012	62.1		
YOLO VGG-16	2007+2012	66.4		

- Classification
- Localization
- Detection
- Segmentation

https://arxiv.org/pdf/1506.02640.pdf https://arxiv.org/pdf/1412.2306v2.pdf

Image caption

a man is riding a motorcycle on a street logprob: -8.65

a woman is standing in front of a store logprob: -11.40

a bus is parked on the side of the road logprob: -7.19

a woman holding a teddy bear in front of a mirror logprob: -9.65

a zebra standing in a field of grass logprob: -7.88

a baby laying on a bed with a stuffed bear logprob: -8.85

https://cs.stanford.edu/people/karpathy/deepimagesent/generationdemo/

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA: I'll drink it.

Writing new episodes of Friends is easy if you use a neural network

"Chandler: Well, I proposed to my shoe..."

By James Vincent | @jjvincent | Jan 21, 2016, 4:03am EST

🔰 📝 SHARE

For $\bigoplus_{n=1,...,m}$ where $\mathcal{L}_{m_{\bullet}} = 0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

 $S = \operatorname{Spec}(R) = U \times_X U \times_X U$

and the comparicoly in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $Spec(R') \to S$ is smooth or an

$U = \bigcup U_i \times_{S_i} U_i$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x, x', s'' \in S'$ such that $\mathcal{O}_{X,x'} \to \mathcal{O}'_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\operatorname{GL}_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i > 0 and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F} = U/\mathcal{F}$ we have to show that

$$\widetilde{I}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\mathrm{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$$

is a unique morphism of algebraic stacks. Note that

 $Arrows = (Sch/S)_{fppf}^{opp}, (Sch/S)_{fppf}$

regular over S.

and

 $V = \Gamma(S, \mathcal{O}) \longmapsto (U, \operatorname{Spec}(A))$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

```
Proof. See discussion of sheaves of sets.
```

The result for prove any open covering follows from the less of Example ??. It may replace S by $X_{spaces, \acute{e}tale}$ which gives an open subspace of X and T equal to S_{Zar} , see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically

Creation: music composition

Generation: image generation

Generated by a machine

Generated by a machine based on given text

- Game Go: 10¹⁷⁰ state space
 Beat European Champion: October 2015
- Beat World Champion: March 2016

Automatic Driving

- □ 1.3 million people die every year in car accidents.
- □ 94% of those accidents involve human error.
- □ 70% of the manned Taxis is related to labor cost.

https://newsroom.uber.com/us-pennsylvania/new-wheels/

Tools that we are going to use during the workshops in this semester

Working environment during the workshop

Online

- Colab (<u>https://colab.research.google.com/</u>)
 - Need a google account
- Google Cloud (<u>https://cloud.google.com/</u>)
 - Need a google account
 - \$300 free account for one year credit card information required to use some extra functions.

Offline

- Installation of the tools in your notebook
 - Anaconda (<u>https://www.anaconda.com/download/</u>)
 - Python 3.7 version
 - Then, you can install almost other packages with "conda" installation
 - Jupyter Notebook

Backup slides