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Recurrent Neural Networks (RNN)
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Some interesting applications

1. Music composition
• http://people.idsia.ch/~juergen/blues/

2. Writing a poem
• https://github.com/dvictor/lstm-poetry

A butterfly in the sun
Just because I know that I should leave this heart for you
You said I was falling apart
I wish I were you
I wanted you to know how I feel
I could have settled it all
It's time to go and do it big and you can be my side
I can't believe it when I see you
I'm lost in the world and I can't see you cry
I'm asking you to love me then let me go
I can't stop this way

http://people.idsia.ch/~juergen/blues/
https://github.com/dvictor/lstm-poetry


4

Recurrent Neural Network (RNN)

 Feed forward neural networks (e.g., NN)
- Temporal independency 
- Fixed length input

 Recurrent Neural Networks 
- Temporal dependencies
- Variable sequence length
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Recurrent Neural Network (RNN)
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Recurrent Neural Network (RNN)
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Recurrent Neural Network (RNN)
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Connectivity of neurons in a vanilla RNN component
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Operation of RNN: Connectivity of neurons in vanilla RNN component
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Operation of RNN: Connectivity of neurons in vanilla RNN component
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 n: hidden layer size
 m: encoding range (e.g., character level - ASCII: 256)
 k: output size
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Long Short Term Memory (LSTM)
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Long Short Term Memory (LSTM) network

 Long Short Term Memory (LSTM) architecture was motivated to overcome the 
problem: error is not back-propagated properly to the end of RNN architecture.
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RNN using BPTT: Vanishing and exploding problems
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http://www.suyongeum.com/ML/lectures/LectureW10_20180621_print.pdf
 Refer to Slide 12

http://www.suyongeum.com/ML/lectures/LectureW10_20180621_print.pdf
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RNN using BPTT: Vanishing and exploding problems
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Long Short Term Memory (LSTM) network

 Hochreiter and Schmidhuber (1997) proposed the Long Short-Term Memory (LSTM) 
cell which includes “a memory unit”:
1) A cell with a number of components that together act similar to a memory cell.
2) Inside one cell, multiple layers called “gates” are used.

1) Forget gate
2) Input gate
3) Output gate

 Long Short Term Memory (LSTM) architecture was motivated to overcome the 
problem: error is not back-propagated properly to the end of RNN architecture.
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Long Short Term Memory (LSTM) network

RNN
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Long Short Term Memory (LSTM) network

RNN
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Long Short Term Memory (LSTM) network

RNN LSTM
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 Cell state: a memory of LSTM cell
 Hidden state: an output of this cell
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LSTM

)hwxw( 1-thftxf ft bsigmf 

 Forget gate layer
 Decide how much “Ct-1” is forgotten?
 If “ft” is zero, forget “Ct-1” completely.
 If “ft” is one, do not forget “Ct-1” at all.

sigmoid:)(

xfw

hfw

Long Short Term Memory (LSTM) network: forget gate
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Long Short Term Memory (LSTM) network: input gate

)hwxwtanh(
~
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 Input gate layer
 decide how much “   ” is forgotten?

 tanh layer:
 decide which value is updated.

LSTM
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Long Short Term Memory (LSTM) network: update cell

 Update the output cell state of “Ct” by 
adding the past cell state of “Ct-1” to 
the present cell state of “    ”

LSTM
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Long Short Term Memory (LSTM) network: output gate

 Output gate layer
 The output cell state is put through 

tanh() and rescaled by the output of 
the sigmoid function.

LSTM
)tanh( ttt Coh 
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Long Short Term Memory (LSTM) network: summary
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http://www.suyongeum.com/ML/lectures/LectureW10_20180621_print.pdf
 Refer to Slide 28 for LSTM backpropagation

http://www.suyongeum.com/ML/lectures/LectureW10_20180621_print.pdf
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Gated Recurrent Unit (GRU)
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Gated Recurrent Unit (GRU)

 Simpler than LSTM and so training is faster,
 Cell state (C) is replaced by hidden state (h),
 GRU has two gates: update gate (z), reset gate (r).
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Hand-on Experience



40

Character level language model using RNN

 The implementation is purely based on numpy only

- https://gist.github.com/karpathy/d4dee566867f8291f086

shakespeare.txt

KING HENRY VI I shall you sir;
When princes but friend ….RNN model

Newly generated text

 1115390 characters
 65 unique characters

https://gist.github.com/karpathy/d4dee566867f8291f086
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RNN review: terminology
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RNN review: terminology

1) Pure vanilla RNN cell
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RNN review: terminology

 Number of neurons 
in hidden layer

- hidden_size: 100

1) Pure vanilla RNN cell
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RNN review: terminology

 Input dimension and Output 
dimension are same in this case

 There are 65 unique characters including white space.
 One hot encoding : [0, 0, 0, …, 1, …, 0]

 Number of neurons 
in hidden layer

- hidden_size: 100

1) Pure vanilla RNN cell
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RNN review: terminology

 Number of neurons 
in hidden layer

- hidden_size: 100

 Number of steps
- seq_length: 25

 Input dimension and Output 
dimension are same in this case 1) Pure vanilla RNN cell

 There are 65 unique characters including white space.
 One hot encoding : [0, 0, 0, …, 1, …, 0]
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Data loading
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1) Data loading
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1) Data loading
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1) Data loading



50

1) Data loading
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1) Data loading
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1) Data loading
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1) Data loading
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Evaluation
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2) Evaluation: loss calculation  

 ps[t]: predicted label which is the output from the previous layer
- e.g., 0.345

 targets[t]: index of the corresponding character. Thus, [target[t], 0] always returns 1

ps target Cross Entropy (error)

0.1, 0.2, 0.7 0, 0, 1 -ln(0.1)*0-ln(0.2)*0-ln(0.7)*1 = 0.357

0.1, 0.6, 0.3 0, 1, 0 -ln(0.1)*0-ln(0.6)*1-ln(0.3)*0 = 0.511

0.3, 0.3, 0.4 1, 0, 0 -ln(0.3)*1-ln(0.3)*0-ln(0.4)*0 = 1.204

example
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2) Evaluation: loss update

https://gist.github.com/karpathy/d4dee566867f8291f086 (sleebapaul commented on July 27)

 *)1(* LSLSL 

*)( LSLSL 
Loss Smooth Loss

https://gist.github.com/karpathy/d4dee566867f8291f086
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Sampling 

 Generating currently 200 characters

h

y

p softmax

 Selection of a character based on its probability 

 h: trained parameters
 seed_ix: random selection of a character
 n: how many characters you want to generate
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Colab: Character level language model using RNN

1) Go to the Colab
 https://colab.research.google.com

2) Select “GITHUB” and copy the link below into
 https://github.com/suyongeum/PMLWS2018_WS4.git

3) Select the notebook in the list
 Nov_20_2018_RNN.ipynb

4) Go to “Runtime” – “Change runtime type”
 Python 3
 GPU

5) Save it into your gdrive
 “File” - “Save a copy in Drive …”

GITHUB

https://colab.research.google.com/
https://github.com/suyongeum/PMLWS2018_WS4.git
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Backup slides
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Tacotron: Towards End-to-End Speech synthesis
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1. Tacotron
2. Deep Voice 2

Model Architecture
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1. Tacotron
2. Deep Voice 2

Model Architecture

1) Encode

2) Decode

4) Attention

3) Vocoder

Text to Number
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Model Architecture: 1) Encode

1) Encode

Text to Number

FC-ReLU-Dropout x 2

1-Convolution bank + Highway 
network + Bidirectional GRU
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Model Architecture: 1) Encode

1) Encode

Text to Number

 Convolution bank:
- Normal convolution layer operation with some filters (filter bank)

 Highway network: 
- Learning how much input data passes through each layer.
- https://arxiv.org/pdf/1505.00387.pdf

 Bidirectional GRU:
- Estimating a present data point based on not only “past one” but also 

“future one”.
- E.g., I like to ?? a soccer.

FC-ReLU-Dropout x 2

1-Convolution Bank + Highway 
network + Bidirectional GRU
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Model Architecture: 2) Decode
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Model Architecture: 2) Decode

 Recurrent Neural Network
 Input: spectrogram
 Output: spectrogram Visual representation of the spectrum of frequencies 

of sound or other signal as they vary with time.

FC-ReLU-Dropout x 2

n spectrogram 
estimation
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Model Architecture: 3) Vocoder

A set of spectrograms are 
estimated from decoder

We saw it in the encode part

One of algorithms which convert 
from spectrogram to audio.
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Model Architecture: 4) Attention

1. Tacotron
2. Deep Voice 2

1) Encode

2) Decode

4) Attention

3) Vocoder

Text to Number
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Attention mechanism: sequence-to-sequence model

 Sequence-to-sequence is a description of a problem where your input is a 
sequence and your output is also sequence. 

 Machine translation

 Question answering

 Transcription of a photo, a video, or a summary of a document.

 RNN and LSTM are neural network models which address the sequence-to-
sequence problem.

Sutskever et al., 2014, “Sequence to Sequence Learning with Neural Networks”
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 Sequence-to-sequence is a description of a problem where your input is a 
sequence and your output is also sequence. 

 Machine translation

 Question answering

 Transcription of a photo, a video, or a summary of a document.

 RNN and LSTM are neural network models which address the sequence-to-
sequence problem.

I,                 eat,             apple

私は りんごを たべます。 I,                 eat,             apple

Attention mechanism: sequence-to-sequence model

Sutskever et al., 2014, “Sequence to Sequence Learning with Neural Networks”
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 Seq-to-seq model assumes that an input sequence is encoded into the final vector and the 
final vector well represents the whole input sequence.

- However, using other encoded vectors seems to be more reasonable when decoding each 
part of the sentence.

- E.g. to decode “I” we may pay more attention to the encode after “私は”

Attention mechanism: sequence-to-sequence model
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Example: original architecture vs with attention mechanism

https://medium.com/datalogue/attention-in-keras-1892773a4f22

 Original architecture: input data is encoded and represented as single unique code
 Architecture with an attention mechanism: individual input data are encoded and represented as multiple codes.

Original architecture An architecture with attention mechanism
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Architecture with an attention mechanism

https://distill.pub/2016/augmented-rnns/

1ts

jh

tj ,

https://arxiv.org/pdf/1409.0473.pdf

encoder

decoder
1ts ts

tc
RNN family


