

Practical Machine Learning

Workshop 4. Recurrent Neural Networks (RNN), LSTM, GRU, and Seq-to-seq & Attention Mechanism

Dr. Suyong Eum

Recurrent Neural Networks (RNN)

Some interesting applications

- 1. Music composition
 - http://people.idsia.ch/~juergen/blues/
- 2. Writing a poem
 - <u>https://github.com/dvictor/lstm-poetry</u>

A butterfly in the sun Just because I know that I should leave this heart for you You said I was falling apart I wish I were you I wanted you to know how I feel I could have settled it all It's time to go and do it big and you can be my side I can't believe it when I see you I'm lost in the world and I can't see you cry I'm asking you to love me then let me go I can't stop this way

110

□ Feed forward neural networks (e.g., NN)

- Temporal independency
- Fixed length input

$$\mathbf{y} = \boldsymbol{\sigma} \big(\mathbf{w} \mathbf{x} + b \big)$$

Recurrent Neural Networks

- Temporal dependencies
- Variable sequence length

$$z^{t} = \sigma \left(w_{x} x^{t} + w_{r} z^{t-1} + b_{z} \right)$$
$$y^{t} = \sigma \left(w_{y} z^{t} + b_{y} \right)$$

"doesn't"

"God"

 $\alpha_{y}(\cdot)$: soft max $\alpha_{z}(\cdot)$: tanh

 $\begin{array}{c}
 y^{(t)} \\
 W_{y} \\
 Z^{(t)} \\
 W_{x} \\
 W_{r} \\
 X^{(t)}
\end{array}$

$$\alpha_y(\cdot)$$
: soft max
 $\alpha_z(\cdot)$: tanh

15

Connectivity of neurons in a vanilla RNN component

where:

 $\begin{array}{ll} z^{(t-1)}, z^{(t)} \in \mathbb{R}^{n} & W_{r} \in \mathbb{R}^{n \times n} & b_{z} \in \mathbb{R}^{n} \\ & x^{(t)} \in \mathbb{R}^{m} & W_{x} \in \mathbb{R}^{n \times m} & b_{y} \in \mathbb{R}^{k} \\ & y^{(t)} \in \mathbb{R}^{k} & W_{y} \in \mathbb{R}^{k \times n} \end{array}$

 $(k \times 1) = (k \times n) (n \times 1) + (k \times 1)$

- n: hidden layer size
- m: encoding range (e.g., character level ASCII: 256)
- k: output size

Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM) architecture was motivated to overcome the problem: error is not back-propagated properly to the end of RNN architecture.

RNN using BPTT: Vanishing and exploding problems

3

$$\frac{\partial E^{(t)}}{\partial w_{r}} = \frac{\partial E^{(3)}}{\partial y^{(3)}} \frac{\partial y^{(3)}}{\partial s_{y}^{(3)}} \frac{\partial s_{y}^{(3)}}{\partial z^{(3)}} \frac{\partial z^{(3)}}{\partial s_{z}^{(3)}} \frac{\partial z^{(3)}}{\partial s_{z}^{(3)}} \frac{\partial s_{z}^{(3)}}{\partial w_{r}} + \frac{\partial E^{(3)}}{\partial y^{(3)}} \frac{\partial y^{(3)}}{\partial s_{y}^{(3)}} \frac{\partial s_{y}^{(3)}}{\partial z^{(3)}} \frac{\partial z^{(3)}}{\partial s_{z}^{(3)}} \frac{\partial z^{(3)}}{\partial s_{z}^{(3)}} \frac{\partial z^{(3)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial s_{z}^{(2)}} \frac{\partial z^{(2)}}{\partial w_{r}}$$

$$+\frac{\partial E^{(3)}}{\partial y^{(3)}}\frac{\partial y^{(3)}}{\partial s_{y}^{(3)}}\frac{\partial s_{y}^{(3)}}{\partial z^{(3)}}\frac{\partial z^{(3)}}{\partial s_{z}^{(3)}}\frac{\partial z^{(3)}}{\partial s_{z}^{(3)}}\frac{\partial s_{z}^{(3)}}{\partial z^{(2)}}\frac{\partial s_{z}^{(2)}}{\partial s_{z}^{(2)}}\frac{\partial z^{(2)}}{\partial z^{(1)}}\frac{\partial s_{z}^{(1)}}{\partial s_{z}^{(1)}}\frac{\partial s_{z}^{(1)}}{\partial w_{r}}$$

http://www.suyongeum.com/ML/lectures/LectureW10 20180621 print.pdf

Refer to Slide 12

RNN using BPTT: Vanishing and exploding problems

$$\sum_{t=1}^{3} \frac{\partial E^{(t)}}{\partial w_{r}} = \frac{\partial E^{(3)}}{\partial y^{(3)}} \frac{\partial y^{(3)}}{\partial s_{y}^{(3)}} \frac{\partial s_{y}^{(3)}}{\partial z^{(3)}} \frac{\partial z^{(3)}}{\partial s_{z}^{(3)}} \frac{\partial z^{(3)}}{\partial s_{z}^{(3)}} \frac{\partial s_{z}^{(3)}}{\partial w_{r}}$$

$$+ \frac{\partial E^{(3)}}{\partial y^{(3)}} \frac{\partial y^{(3)}}{\partial s_{y}^{(3)}} \frac{\partial s_{y}^{(3)}}{\partial z^{(3)}} \frac{\partial z^{(3)}}{\partial s_{z}^{(3)}} \frac{\partial s_{z}^{(3)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial z^{(2)}} \frac{\partial s^{(2)}}{\partial s_{z}^{(2)}} \frac{\partial s^{(2)}}{\partial w_{r}}$$

$$+ \frac{\partial E^{(3)}}{\partial y^{(3)}} \frac{\partial y^{(3)}}{\partial s_{y}^{(3)}} \frac{\partial s_{y}^{(3)}}{\partial z^{(3)}} \frac{\partial z^{(3)}}{\partial s_{z}^{(3)}} \frac{\partial s^{(3)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial s_{z}^{(2)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial s_{z}^{(1)}} \frac{\partial s^{(1)}}{\partial w_{r}}$$

$$- Activation function (tanh)$$

$$tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^{(x)} - e^{(x)}}{e^{(x)} + e^{(x)}} => \sigma(x) \qquad \frac{d\sigma(x)}{dx} = 1 - \sigma(x)^{2}$$

- Long Short Term Memory (LSTM) architecture was motivated to overcome the problem: error is not back-propagated properly to the end of RNN architecture.
- Hochreiter and Schmidhuber (1997) proposed the Long Short-Term Memory (LSTM) cell which includes "a memory unit":
 - 1) A cell with a number of components that together act similar to a memory cell.
 - 2) Inside one cell, multiple layers called "gates" are used.
 - 1) Forget gate
 - 2) Input gate
 - *3) Output gate*

Long Short Term Memory (LSTM) network

$$z^{(t)} = \alpha_z \left(w_x x^{(t)} + w_r z^{(t-1)} + b_z \right)$$
$$y^{(t)} = \alpha_y \left(w_y z^{(t)} + b_y \right)$$

RNN

Long Short Term Memory (LSTM) network

$$z^{(t)} = \alpha_z \left(w_x x^{(t)} + w_r z^{(t-1)} + b_z \right)$$
$$y^{(t)} = \alpha_y \left(w_y z^{(t)} + b_y \right)$$

RNN

Long Short Term Memory (LSTM) network

$$\sigma(\cdot): sigmoid$$

$$h_t$$

$$f_t$$

$$C_{t-1}$$

$$C_{t-1}$$

$$f_{t-1}$$

$$h_{t-1}$$

$$h_{t-1}$$

$$h_{t-1}$$

$$h_{t-1}$$

$$h_{t-1}$$

$$z^{(t)} = \alpha_z \left(w_x x^{(t)} + w_r z^{(t-1)} + b_z \right)$$
$$y^{(t)} = \alpha_y \left(w_y z^{(t)} + b_y \right)$$

Cell state: a memory of LSTM cell
 Hidden state: an output of this cell

LSTM

RNN

Long Short Term Memory (LSTM) network: forget gate

$$f_t = sigm(\mathbf{w}_{xf}\mathbf{x}_t + \mathbf{w}_{hf}\mathbf{h}_{t-1} + b_f)$$

 $\sigma(\cdot)$: sigmoid

LSTM

Given State Forget gate layer

- Decide how much "C_{t-1}" is forgotten?
- If "f_t" is zero, forget "C_{t-1}" completely.
- If "f_t" is one, do not forget "C_{t-1}" at all.

Long Short Term Memory (LSTM) network: input gate

LSTM

$$i_{t} = sigm(\mathbf{w}_{xi}\mathbf{x}_{t} + \mathbf{w}_{hi}\mathbf{h}_{t-1} + b_{i})$$
$$\widetilde{C}_{t} = tanh(\mathbf{w}_{xC}\mathbf{x}_{t} + \mathbf{w}_{hC}\mathbf{h}_{t-1} + b_{C})$$

 $\sigma(\cdot)$: sigmoid

Input gate layer

• decide how much " \widetilde{C}_t " is forgotten?

u tanh layer:

decide which value is updated.

Long Short Term Memory (LSTM) network: update cell

LSTM

$$C_t = f_t * C_{t-1} + i_t * \widetilde{C}_t$$

memory memory

□ Update the output cell state of " C_t " by adding the past cell state of " C_{t-1} " to the present cell state of " \tilde{C}_t "

Long Short Term Memory (LSTM) network: output gate

LSTM

$$o_t = sigm(\mathbf{w}_{xo}\mathbf{x}_t + \mathbf{w}_{ho}\mathbf{h}_{t-1} + b_o)$$

Output gate layer

 $h_t = o_t * \tanh(C_t)$

 The output cell state is put through tanh() and rescaled by the output of the sigmoid function.

 $\sigma(\cdot)$: sigmoid

Long Short Term Memory (LSTM) network: summary

$$f_{t} = sigm(\mathbf{w}_{xf}\mathbf{x}_{t} + \mathbf{w}_{hf}\mathbf{h}_{t-1} + b_{f})$$

$$i_{t} = sigm(\mathbf{w}_{xi}\mathbf{x}_{t} + \mathbf{w}_{hi}\mathbf{h}_{t-1} + b_{i})$$

$$o_{t} = sigm(\mathbf{w}_{xo}\mathbf{x}_{t} + \mathbf{w}_{ho}\mathbf{h}_{t-1} + b_{o})$$

$$\widetilde{C}_{t} = tanh(\mathbf{w}_{xC}\mathbf{x}_{t} + \mathbf{w}_{hC}\mathbf{h}_{t-1} + b_{C})$$

$$C_{t} = f_{t} * C_{t-1} + i_{t} * \widetilde{C}_{t}$$

$$h_{t} = o_{t} * tanh(C_{t})$$

http://www.suyongeum.com/ML/lectures/LectureW10_20180621_print.pdf

Refer to Slide 28 for LSTM backpropagation
Gated Recurrent Unit (GRU)

- Simpler than LSTM and so training is faster,
- Cell state (C) is replaced by hidden state (h),
- GRU has two gates: update gate (z), reset gate (r).

$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

Hand-on Experience

Character level language model using RNN

□ The implementation is purely based on numpy only

- <u>https://gist.github.com/karpathy/d4dee566867f8291f086</u>

shakespeare.txt

<u>1115390</u> characters

65 unique characters

First Citizen:

Before we proceed any further, hear me speak.

All: Speak, speak.

First Citizen: You are all resolved rather to die than to famish?

All: Resolved. resolved.

First Citizen: First, you know Caius Marcius is chief enemy to the people.

All: We know't, we know't.

First Citizen: Let us kill him, and we'll have corn at our own price. Is't a verdict?

Newly generated text

KING HENRY VI I shall you sir; When princes but friend

- There are 65 unique characters including white space.
- One hot encoding : [0, 0, 0, ..., 1, ..., 0]

- There are **65** unique characters including white space.
- One hot encoding : [0, 0, 0, ..., 1, ..., 0]

Data loading

```
# data I/O
data = open(input_file, 'r').read() # should be simple plain text file
chars = list(set(data))
data size, vocab size = len(data), len(chars)
print ('data has %d characters, %d unique.' % (data size, vocab size))
char to ix = { ch:i for i, ch in enumerate(chars) } # make a dictionary format. See below how it looks like
ix to char = { i:ch for i,ch in enumerate(chars) }
print (char to ix)
print (ix to char)
# hyperparameters
hidden size = 100 # hidden size: # of neurons
seq length = 25 # number of steps to unroll the RNN for
learning rate = 1e-1
# model parameters
Wxh = np.random.randn(hidden size, vocab size)*0.01 # input to hidden
Whh = np.random.randn(hidden size, hidden size)*0.01 # hidden to hidden
Why = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output
bh = np.zeros((hidden size, 1)) # hidden bias
                                                                                \rightarrow \rightarrow x = [1, 1, 2, 2, 2, 2, 2, 3, 3]
by = np.zeros((vocab size, 1)) # output bias
                                                                                >>> set(x)
                                                                               set([1, 2, 3])
data has 1115390 characters, 65 unique.
```

{'i': 0, 'D': 1, 'W': 2, '&': 3, 'l': 4, 'H': 5, 'y': 6, 'A': 7, 'I': 8, 'b': 9, 'j': 10, 'G': 11, '3': 12, {0: 'i', 1: 'D', 2: 'W', 3: '&', 4: 'l', 5: 'H', 6: 'y', 7: 'A', 8: 'I', 9: 'b', 10: 'j', 11: 'G', 12: '3',

```
# data I/O
data = open(input_file, 'r').read() # should be simple plain text file
chars = list(set(data))
data size, vocab size = len(data), len(chars)
print ('data has %d characters, %d unique.' % (data size, vocab size))
char to ix = { ch:i for i, ch in enumerate(chars) } # make a dictionary format. See below how it looks like
ix to char = { i:ch for i,ch in enumerate(chars) }
print (char to ix)
print (ix to char)
# hyperparameters
hidden size = 100 # hidden size: # of neurons
seq length = 25 # number of steps to unroll the RNN for
learning rate = 1e-1
# model parameters
Wxh = np.random.randn(hidden size, vocab size)*0.01 # input to hidden
Whh = np.random.randn(hidden size, hidden size)*0.01 # hidden to hidden
Why = np.random.randn(vocab size, hidden size)*0.01 # hidden to output
bh = np.zeros((hidden size, 1)) # hidden bias
by = np.zeros((vocab size, 1)) # output bias
```

data has 1115390 characters, 65 unique. {'i': 0, 'D': 1, 'W': 2, '&': 3, 'l': 4, 'H': 5, 'y': 6, 'A': 7, 'I': 8, 'b': 9, 'j': 10, 'G': 11, '3': 12, {0: 'i', 1: 'D', 2: 'W', 3: '&', 4: 'l', 5: 'H', 6: 'y', 7: 'A', 8: 'I', 9: 'b', 10: 'j', 11: 'G', 12: '3',

```
# data I/O
data = open(input_file, 'r').read() # should be simple plain text file
chars = list(set(data))
data size, vocab size = len(data), len(chars)
print ('data has %d characters, %d unique.' % (data size, vocab size))
char to ix = { ch:i for i, ch in enumerate(chars) } # make a dictionary format. See below how it looks like
ix to char = { i:ch for i,ch in enumerate(chars) }
print (char to ix)
print (ix to char)
# hyperparameters
hidden size = 100 # hidden size: # of neurons
seq length = 25 # number of steps to unroll the RNN for
learning rate = 1e-1
# model parameters
Wxh = np.random.randn(hidden size, vocab size)*0.01 # input to hidden
Whh = np.random.randn(hidden size, hidden size)*0.01 # hidden to hidden
Why = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output
bh = np.zeros((hidden size, 1)) # hidden bias
by = np.zeros((vocab size, 1)) # output bias
```

data has 1115390 characters, 65 unique. {'i': 0, 'D': 1, 'W': 2, '&': 3, 'l': 4, 'H': 5, 'y': 6, 'A': 7, 'I': 8, 'b': 9, 'j': 10, 'G': 11, '3': 12, {0: 'i', 1: 'D', 2: 'W', 3: '&', 4: 'l', 5: 'H', 6: 'y', 7: 'A', 8: 'I', 9: 'b', 10: 'j', 11: 'G', 12: '3',

1) Data loading

```
# data I/O
data = open(input file, 'r').read() # should be simple p
chars = list(set(data))
data size, vocab size = len(data), len(chars)
print ('data has %d characters, %d unique.' % (data size
char_to_ix = { ch:i for i,ch in enumerate(chars) } # mak
ix_to_char = { i:ch for i,ch in enumerate(chars) }
print (char to ix)
print (ix to char)
# hyperparameters
hidden size = 100 # hidden size: # of neurons
seq length = 25 # number of steps to unroll the RNN for
                                                          100
learning rate = 1e-1
# model parameters
Wxh = np.random.randn(hidden size, vocab size)*0.01 # in
Whh = np.random.randn(hidden size, hidden size)*0.01 # h
Why = np.random.randn(vocab size, hidden size)*0.01 # hi
bh = np.zeros((hidden size, 1)) # hidden bias
by = np.zeros((vocab size, 1)) # output bias
```


1) Data loading

```
# data I/O
data = open(input file, 'r').read() # should be simple p
chars = list(set(data))
data size, vocab size = len(data), len(chars)
print ('data has %d characters, %d unique.' % (data size
char_to_ix = { ch:i for i,ch in enumerate(chars) } # mak
ix_to_char = { i:ch for i,ch in enumerate(chars) }
print (char to ix)
print (ix to char)
# hyperparameters
hidden size = 100 # hidden size: # of neurons
seq_length = 25 # number of steps to unroll the RNN for
learning rate = 1e-1
# model parameters
Wxh = np.random.randn(hidden size, vocab size)*0.01 # in
Whh = np.random.randn(hidden size, hidden size)*0.01 # h
Why = np.random.randn(vocab size, hidden size)*0.01 # hi
bh = np.zeros((hidden size, 1)) # hidden bias
by = np.zeros((vocab size, 1)) # output bias
```



```
# data I/O
data = open(input file, 'r').read() # should be simple plain text file
chars = list(set(data))
data size, vocab size = len(data), len(chars)
print ('data has %d characters, %d unique.' % (data size, vocab size))
char to ix = { ch:i for i, ch in enumerate(chars) } # make a dictionary format. See below how it looks like
ix to char = { i:ch for i,ch in enumerate(chars) }
print (char to ix)
print (ix to char)
# hyperparameters
hidden size = 100 # hidden size: # of neurons
seq length = 25 # number of steps to unroll the RNN for
learning rate = 1e-1
# model parameters
Wxh = np.random.randn(hidden size, vocab size)*0.01 # input to hidden
Whh = np.random.randn(hidden size, hidden size)*0.01 # hidden to hidden
Why = np.random.randn(vocab size, hidden size)*0.01 # hidden to output
bh = np.zeros((hidden size, 1)) # hidden bias
by = np.zeros((vocab size, 1)) # output bias
```

data has 1115390 characters, 65 unique. {'i': 0, 'D': 1, 'W': 2, '&': 3, 'l': 4, 'H': 5, 'y': 6, 'A': 7, 'I': 8, 'b': 9, 'j': 10, 'G': 11, '3': 12, {0: 'i', 1: 'D', 2: 'W', 3: '&', 4: 'l', 5: 'H', 6: 'y', 7: 'A', 8: 'I', 9: 'b', 10: 'j', 11: 'G', 12: '3',

1) Data loading

```
# data I/O
data = open(input file, 'r').read() # should be simple p
chars = list(set(data))
data size, vocab size = len(data), len(chars)
print ('data has %d characters, %d unique.' % (data size
char_to_ix = { ch:i for i,ch in enumerate(chars) } # mak
ix_to_char = { i:ch for i,ch in enumerate(chars) }
print (char to ix)
print (ix to char)
# hyperparameters
hidden size = 100 # hidden size: # of neurons
seq length = 25 # number of steps to unroll the RNN for
learning rate = 1e-1
# model parameters
Wxh = np.random.randn(hidden size, vocab size)*0.01 # in
Whh = np.random.randn(hidden size, hidden size)*0.01 # h
Why = np.random.randn(vocab_size, hidden_size)*0.01 # hi
bh = np.zeros((hidden size, 1)) # hidden bias
by = np.zeros((vocab size, 1)) # output bias
```


Evaluation

2) Evaluation: loss calculation

```
def lossFun(inputs, targets, hprev):
 inputs, targets are both list of integers.
  hprev is Hx1 array of initial hidden state
  returns the loss, gradients on model parameters, and last hidden state
  .....
 xs, hs, ys, ps = {}, {}, {}, {}
 hs[-1] = np.copy(hprev)
  loss = 0
  # forward pass
 for t in range(len(inputs)):
   xs[t] = np.zeros((vocab size,1)) # encode in 1-of-k representation
   xs[t][inputs[t]] = 1
    hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state
   ys[t] = np.dot(Why, hs[t]) + by # unnormalized log probabilities for next chars
    ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars
    loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss)
```

 \Box <u>ps[t]</u>: predicted label which is the output from the previous layer

- e.g., 0.345

□ <u>targets[t]</u>: index of the corresponding character. Thus, [target[t], 0] always returns 1

example	ps	target	Cross Entropy (error)
	0.1, 0.2, 0.7	0, 0, 1	-ln(0.1)*0-ln(0.2)*0-ln(0.7)*1 = 0.357
	0.1, 0.6, 0.3	0, 1, 0	-ln(0.1)*0-ln(0.6)*1-ln(0.3)*0 = 0.511
	0.3, 0.3, 0.4	1, 0, 0	-ln(0.3)*1-ln(0.3)*0-ln(0.4)*0 = 1.204

forward seq_length characters through the net and fetch gradient
loss, dWxh, dWhh, dWhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * 0.999 + loss * 0.001 #
if n % 1000 == 0: print ('iter %d, loss: %f \n\n' % (n, smooth_loss, loss)) # print progress

$SL = SL^*(1-\alpha) + L^*\alpha$

 $=SL-(SL-L)*\alpha$

Sampling

Bias

Unit

 b_h

Current

Input

 $\mathbf{x}^{(t)}$

- h: trained parameters
- seed_ix: random selection of a character
- n: how many characters you want to generate

⁵Colab: Character level language model using RNN

Backup slides

Tacotron: Towards End-to-End Speech synthesis

3) Vocoder

2) Decode

Model Architecture: 1) Encode

Model Architecture: 1) Encode

- E.g., I like to ?? a soccer.

Model Architecture: 2) Decode

Model Architecture: 2) Decode

Visual representation of the spectrum of frequencies of sound or other signal as they vary with time.

Model Architecture: 4) Attention

3) Vocoder

2) Decode

Attention mechanism: sequence-to-sequence model

- Sequence-to-sequence is a description of a problem where your input is a sequence and your output is also sequence.
 - Machine translation
 - Question answering
 - Transcription of a photo, a video, or a summary of a document.
- RNN and LSTM are neural network models which address the sequence-tosequence problem.

Figure 1: Our model reads an input sentence "ABC" and produces "WXYZ" as the output sentence. The model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the input sentence in reverse, because doing so introduces many short term dependencies in the data that make the optimization problem much easier.

Attention mechanism: sequence-to-sequence model

- Sequence-to-sequence is a description of a problem where your input is a sequence and your output is also sequence.
 - Machine translation
 - Question answering
 - Transcription of a photo, a video, or a summary of a document.
- RNN and LSTM are neural network models which address the sequence-tosequence problem.

Figure 1: Our model reads an input sentence "ABC" and produces "WXYZ" as the output sentence. The model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the input sentence in reverse, because doing so introduces many short term dependencies in the data that make the optimization problem much easier.

Attention mechanism: sequence-to-sequence model

Seq-to-seq model assumes that an input sequence is encoded into the final vector and the final vector well represents the whole input sequence.

- However, using other encoded vectors seems to be more reasonable when decoding each part of the sentence.
 - E.g. to decode "I" we may pay more *attention* to the encode after "私は"

Example: original architecture vs with attention mechanism

Original architecture: input data is encoded and represented as single unique code
 Architecture with an attention mechanism: individual input data are encoded and represented as multiple codes.

Original architecture

An architecture with attention mechanism
Architecture with an attention mechanism

$$e_{j,t} = V_a \cdot \tanh(W_a s_{t-1} + U_a h_j)$$

$$\alpha_{j,t} = \frac{\exp(e_j)}{\sum_{k=1}^T \exp(e_k)}$$
$$c_t = \sum_{k=1}^T \alpha_{k,t} h_k$$

https://arxiv.org/pdf/1409.0473.pdf https://distill.pub/2016/augmented-rnns/