
1

Practical Machine Learning

Dr. Suyong Eum

Workshop 4.

Recurrent Neural Networks (RNN), LSTM, GRU, and  
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Recurrent Neural Networks (RNN)
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Some interesting applications

1. Music composition
• http://people.idsia.ch/~juergen/blues/

2. Writing a poem
• https://github.com/dvictor/lstm-poetry

A butterfly in the sun
Just because I know that I should leave this heart for you
You said I was falling apart
I wish I were you
I wanted you to know how I feel
I could have settled it all
It's time to go and do it big and you can be my side
I can't believe it when I see you
I'm lost in the world and I can't see you cry
I'm asking you to love me then let me go
I can't stop this way

http://people.idsia.ch/~juergen/blues/
https://github.com/dvictor/lstm-poetry
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Recurrent Neural Network (RNN)

 Feed forward neural networks (e.g., NN)
- Temporal independency 
- Fixed length input

 Recurrent Neural Networks 
- Temporal dependencies
- Variable sequence length
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Recurrent Neural Network (RNN)
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Recurrent Neural Network (RNN)
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Recurrent Neural Network (RNN)
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Recurrent Neural Network (RNN)
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Connectivity of neurons in a vanilla RNN component
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Operation of RNN: Connectivity of neurons in vanilla RNN component



18

Operation of RNN: Connectivity of neurons in vanilla RNN component
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 n: hidden layer size
 m: encoding range (e.g., character level - ASCII: 256)
 k: output size
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Long Short Term Memory (LSTM)
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Long Short Term Memory (LSTM) network

 Long Short Term Memory (LSTM) architecture was motivated to overcome the 
problem: error is not back-propagated properly to the end of RNN architecture.
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RNN using BPTT: Vanishing and exploding problems
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http://www.suyongeum.com/ML/lectures/LectureW10_20180621_print.pdf
 Refer to Slide 12

http://www.suyongeum.com/ML/lectures/LectureW10_20180621_print.pdf
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RNN using BPTT: Vanishing and exploding problems

r

z

z

z

z

y

y w

s

s

z

z

s

s

z

z

s

s

y

y

E






























)2(

)2(

)2(

)2(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

r

z

z

z

z

z

z

y

y w

s

s

z

z

s

s

z

z

s

s

z

z

s

s

y

y

E






































)1(

)1(

)1(

)1(

)2(

)2(

)2(

)2(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

Activation function (tanh)

 
 21 x

dx

xd





rw
rwrw (0)z

r

z

z

y

yt r

t

w

s

s

z

z

s

s

y

y

E

w

E




























)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(3

1

)(

 x



28

Long Short Term Memory (LSTM) network

 Hochreiter and Schmidhuber (1997) proposed the Long Short-Term Memory (LSTM) 
cell which includes “a memory unit”:
1) A cell with a number of components that together act similar to a memory cell.
2) Inside one cell, multiple layers called “gates” are used.

1) Forget gate
2) Input gate
3) Output gate

 Long Short Term Memory (LSTM) architecture was motivated to overcome the 
problem: error is not back-propagated properly to the end of RNN architecture.
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Long Short Term Memory (LSTM) network
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Long Short Term Memory (LSTM) network
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Long Short Term Memory (LSTM) network

RNN LSTM
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LSTM

)hwxw( 1-thftxf ft bsigmf 

 Forget gate layer
 Decide how much “Ct-1” is forgotten?
 If “ft” is zero, forget “Ct-1” completely.
 If “ft” is one, do not forget “Ct-1” at all.

sigmoid:)(

xfw

hfw

Long Short Term Memory (LSTM) network: forget gate
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Long Short Term Memory (LSTM) network: input gate

)hwxwtanh(
~
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 Input gate layer
 decide how much “   ” is forgotten?

 tanh layer:
 decide which value is updated.
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Long Short Term Memory (LSTM) network: update cell

 Update the output cell state of “Ct” by 
adding the past cell state of “Ct-1” to 
the present cell state of “    ”

LSTM
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Long Short Term Memory (LSTM) network: output gate

 Output gate layer
 The output cell state is put through 

tanh() and rescaled by the output of 
the sigmoid function.

LSTM
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Long Short Term Memory (LSTM) network: summary
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http://www.suyongeum.com/ML/lectures/LectureW10_20180621_print.pdf
 Refer to Slide 28 for LSTM backpropagation

http://www.suyongeum.com/ML/lectures/LectureW10_20180621_print.pdf
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Gated Recurrent Unit (GRU)
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Gated Recurrent Unit (GRU)

 Simpler than LSTM and so training is faster,
 Cell state (C) is replaced by hidden state (h),
 GRU has two gates: update gate (z), reset gate (r).
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Hand-on Experience
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Character level language model using RNN

 The implementation is purely based on numpy only

- https://gist.github.com/karpathy/d4dee566867f8291f086

shakespeare.txt

KING HENRY VI I shall you sir;
When princes but friend ….RNN model

Newly generated text

 1115390 characters
 65 unique characters

https://gist.github.com/karpathy/d4dee566867f8291f086
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RNN review: terminology
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RNN review: terminology

1) Pure vanilla RNN cell
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RNN review: terminology

 Number of neurons 
in hidden layer

- hidden_size: 100

1) Pure vanilla RNN cell
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RNN review: terminology

 Input dimension and Output 
dimension are same in this case

 There are 65 unique characters including white space.
 One hot encoding : [0, 0, 0, …, 1, …, 0]

 Number of neurons 
in hidden layer

- hidden_size: 100

1) Pure vanilla RNN cell
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RNN review: terminology

 Number of neurons 
in hidden layer

- hidden_size: 100

 Number of steps
- seq_length: 25

 Input dimension and Output 
dimension are same in this case 1) Pure vanilla RNN cell

 There are 65 unique characters including white space.
 One hot encoding : [0, 0, 0, …, 1, …, 0]
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Data loading
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1) Data loading
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1) Data loading
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1) Data loading
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1) Data loading
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1) Data loading
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1) Data loading



53

1) Data loading
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Evaluation
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2) Evaluation: loss calculation  

 ps[t]: predicted label which is the output from the previous layer
- e.g., 0.345

 targets[t]: index of the corresponding character. Thus, [target[t], 0] always returns 1

ps target Cross Entropy (error)

0.1, 0.2, 0.7 0, 0, 1 -ln(0.1)*0-ln(0.2)*0-ln(0.7)*1 = 0.357

0.1, 0.6, 0.3 0, 1, 0 -ln(0.1)*0-ln(0.6)*1-ln(0.3)*0 = 0.511

0.3, 0.3, 0.4 1, 0, 0 -ln(0.3)*1-ln(0.3)*0-ln(0.4)*0 = 1.204

example
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2) Evaluation: loss update

https://gist.github.com/karpathy/d4dee566867f8291f086 (sleebapaul commented on July 27)

 *)1(* LSLSL 

*)( LSLSL 
Loss Smooth Loss

https://gist.github.com/karpathy/d4dee566867f8291f086
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Sampling 

 Generating currently 200 characters

h

y

p softmax

 Selection of a character based on its probability 

 h: trained parameters
 seed_ix: random selection of a character
 n: how many characters you want to generate
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Colab: Character level language model using RNN

1) Go to the Colab
 https://colab.research.google.com

2) Select “GITHUB” and copy the link below into
 https://github.com/suyongeum/PMLWS2018_WS4.git

3) Select the notebook in the list
 Nov_20_2018_RNN.ipynb

4) Go to “Runtime” – “Change runtime type”
 Python 3
 GPU

5) Save it into your gdrive
 “File” - “Save a copy in Drive …”

GITHUB

https://colab.research.google.com/
https://github.com/suyongeum/PMLWS2018_WS4.git
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Backup slides
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Tacotron: Towards End-to-End Speech synthesis
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1. Tacotron
2. Deep Voice 2

Model Architecture
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1. Tacotron
2. Deep Voice 2

Model Architecture

1) Encode

2) Decode

4) Attention

3) Vocoder

Text to Number
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Model Architecture: 1) Encode

1) Encode

Text to Number

FC-ReLU-Dropout x 2

1-Convolution bank + Highway 
network + Bidirectional GRU
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Model Architecture: 1) Encode

1) Encode

Text to Number

 Convolution bank:
- Normal convolution layer operation with some filters (filter bank)

 Highway network: 
- Learning how much input data passes through each layer.
- https://arxiv.org/pdf/1505.00387.pdf

 Bidirectional GRU:
- Estimating a present data point based on not only “past one” but also 

“future one”.
- E.g., I like to ?? a soccer.

FC-ReLU-Dropout x 2

1-Convolution Bank + Highway 
network + Bidirectional GRU
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Model Architecture: 2) Decode
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Model Architecture: 2) Decode

 Recurrent Neural Network
 Input: spectrogram
 Output: spectrogram Visual representation of the spectrum of frequencies 

of sound or other signal as they vary with time.

FC-ReLU-Dropout x 2

n spectrogram 
estimation
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Model Architecture: 3) Vocoder

A set of spectrograms are 
estimated from decoder

We saw it in the encode part

One of algorithms which convert 
from spectrogram to audio.
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Model Architecture: 4) Attention

1. Tacotron
2. Deep Voice 2

1) Encode

2) Decode

4) Attention

3) Vocoder

Text to Number



69

Attention mechanism: sequence-to-sequence model

 Sequence-to-sequence is a description of a problem where your input is a 
sequence and your output is also sequence. 

 Machine translation

 Question answering

 Transcription of a photo, a video, or a summary of a document.

 RNN and LSTM are neural network models which address the sequence-to-
sequence problem.

Sutskever et al., 2014, “Sequence to Sequence Learning with Neural Networks”
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 Sequence-to-sequence is a description of a problem where your input is a 
sequence and your output is also sequence. 

 Machine translation

 Question answering

 Transcription of a photo, a video, or a summary of a document.

 RNN and LSTM are neural network models which address the sequence-to-
sequence problem.

I,                 eat,             apple

私は りんごを たべます。 I,                 eat,             apple

Attention mechanism: sequence-to-sequence model

Sutskever et al., 2014, “Sequence to Sequence Learning with Neural Networks”
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 Seq-to-seq model assumes that an input sequence is encoded into the final vector and the 
final vector well represents the whole input sequence.

- However, using other encoded vectors seems to be more reasonable when decoding each 
part of the sentence.

- E.g. to decode “I” we may pay more attention to the encode after “私は”

Attention mechanism: sequence-to-sequence model
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Example: original architecture vs with attention mechanism

https://medium.com/datalogue/attention-in-keras-1892773a4f22

 Original architecture: input data is encoded and represented as single unique code
 Architecture with an attention mechanism: individual input data are encoded and represented as multiple codes.

Original architecture An architecture with attention mechanism
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Architecture with an attention mechanism

https://distill.pub/2016/augmented-rnns/

1ts

jh

tj ,

https://arxiv.org/pdf/1409.0473.pdf

encoder

decoder
1ts ts

tc
RNN family


