
1

Practical Machine Learning

Dr. Suyong Eum

Workshop 4.

Recurrent Neural Networks (RNN), LSTM, GRU, and

Seq-to-seq & Attention Mechanism

2

Recurrent Neural Networks (RNN)

3

Some interesting applications

1. Music composition
• http://people.idsia.ch/~juergen/blues/

2. Writing a poem
• https://github.com/dvictor/lstm-poetry

A butterfly in the sun
Just because I know that I should leave this heart for you
You said I was falling apart
I wish I were you
I wanted you to know how I feel
I could have settled it all
It's time to go and do it big and you can be my side
I can't believe it when I see you
I'm lost in the world and I can't see you cry
I'm asking you to love me then let me go
I can't stop this way

http://people.idsia.ch/~juergen/blues/
https://github.com/dvictor/lstm-poetry

4

Recurrent Neural Network (RNN)

 Feed forward neural networks (e.g., NN)
- Temporal independency
- Fixed length input

 Recurrent Neural Networks
- Temporal dependencies
- Variable sequence length

 b wxy 

y

 zb 1-t

r

t

x

t zwxwz 

 yb t

y

t zwy 

1)-(tz

5

Recurrent Neural Network (RNN)

Unfold

(t)z

(t)x

(t)y

yw

xw rw

6

Recurrent Neural Network (RNN)

1)-(tz

1)-(tx

1)-(ty

yw

xw

. . . rw

Unfold

(t)z

(t)x

(t)y

yw

xw rw

“God”

“doesn’t”

7

Recurrent Neural Network (RNN)

(t)z

(t)x

(t)y

yw

xw

1)-(tz

1)-(tx

1)-(ty

yw

xw

. . . rw rw

Unfold

(t)z

(t)x

(t)y

yw

xw rw

“God”

“play”

“doesn’t”

“doesn’t”

8

Recurrent Neural Network (RNN)

(t)z

(t)x

(t)y

yw

xw

1)(tz 

1)(tx 

1)(ty 

yw

xw

1)-(tz

1)-(tx

1)-(ty

yw

xw

.rw rw rw

Unfold

(t)z

(t)x

(t)y

yw

xw rw

“God”

“play”

“doesn’t”

“doesn’t”

“play”

“dice”

9

(t)z

(t)x

(t)y

yw

xw rw

Recurrent Neural Network (RNN): inner structure

10

(t)z

(t)x

(t)y

yw

xw

(t)x

(t)y

yw

xw

rw

zb

yb

Recurrent Neural Network (RNN): inner structure

11

(t)z

(t)x

(t)y

yw

xw

(t)x

(t)y

yw

xw

)(z 

)(y 

rw

zb

yb tanh:)(z

max:)(softy 

Recurrent Neural Network (RNN): inner structure

12

(t)z

(t)x

(t)y

yw

xw

(t)x

(t)y

yw

xw

)(z 

)(y 

rw

zb

yb tanh:)(z

max:)(softy 

1)-(tz
rw

Recurrent Neural Network (RNN): inner structure

13

(t)z

(t)x

(t)y

yw

xw

(t)x

(t)y

yw

xw

)(z 

)(y 

rw

zb

yb tanh:)(z

max:)(softy 

(t)z

(t)z

1)-(tz
rw

Recurrent Neural Network (RNN): inner structure

14

(t)z

(t)x

(t)y

yw

xw

(t)x

(t)y

yw

xw

)(z 

)(y 

rw

zb

yb tanh:)(z

max:)(softy 

(t)z

 z

1)-(t

r

(t)

z

(t) bzwxwz  x

1)-(tz
rw

(t)z

Recurrent Neural Network (RNN): inner structure

15

(t)z

(t)x

(t)y

yw

xw

(t)x

(t)y

yw

xw

)(z 

)(y 

rw

zb

yb tanh:)(z

max:)(softy 

(t)z

 z

1)-(t

r

(t)

z

(t) bzwxwz  x

1)-(tz
rw

 y

(t)

yy

(t) bzwy 

(t)z

Recurrent Neural Network (RNN): inner structure

16

Connectivity of neurons in a vanilla RNN component

17

Operation of RNN: Connectivity of neurons in vanilla RNN component

18

Operation of RNN: Connectivity of neurons in vanilla RNN component

19

1)-(tz

Hidden
layer

(t)x

(t)z

Operation of RNN: Connectivity of neurons in vanilla RNN component

20

rw xw

1)-(tz

Hidden
layer

(t)x

(t)z

Operation of RNN: Connectivity of neurons in vanilla RNN component

21

rw xw

yw

yb

1)-(tz

Hidden
layer

(t)x

(t)z

Operation of RNN: Connectivity of neurons in vanilla RNN component

22

rw xw

yw

yb

(t)y

1)-(tz

Hidden
layer

(t)x

(t)z

Operation of RNN: Connectivity of neurons in vanilla RNN component

23

where:

n(t)1)-(t Rz,z 
m(t) Rx 

nn

r RW 

mn

x RW 

n

z Rb 

 z

1)-(t

r

(t)

z

(t) bzwxwz  x

(n x 1) (n x m) (m x 1) (n x n) (n x 1) (n x 1)= + +

 y

(t)

yy

(t) bzwy 

k(t) Ry 
n k

y RW

k

y Rb 

(k x 1) (k x n) (n x 1) (k x 1)= +

rw xw

yw

yb

(t)y

1)-(tz

Hidden
layer

(t)x

(t)z

Operation of RNN: Connectivity of neurons in vanilla RNN component

 n: hidden layer size
 m: encoding range (e.g., character level - ASCII: 256)
 k: output size

24

Long Short Term Memory (LSTM)

25

Long Short Term Memory (LSTM) network

 Long Short Term Memory (LSTM) architecture was motivated to overcome the
problem: error is not back-propagated properly to the end of RNN architecture.

26

RNN using BPTT: Vanishing and exploding problems

r

z

z

y

yt r

t

w

s

s

z

z

s

s

y

y

E

w

E




























)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(3

1

)(

r

z

z

z

z

y

y w

s

s

z

z

s

s

z

z

s

s

y

y

E






























)2(

)2(

)2(

)2(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

r

z

z

z

z

z

z

y

y w

s

s

z

z

s

s

z

z

s

s

z

z

s

s

y

y

E






































)1(

)1(

)1(

)1(

)2(

)2(

)2(

)2(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

http://www.suyongeum.com/ML/lectures/LectureW10_20180621_print.pdf
 Refer to Slide 12

http://www.suyongeum.com/ML/lectures/LectureW10_20180621_print.pdf

27

RNN using BPTT: Vanishing and exploding problems

r

z

z

z

z

y

y w

s

s

z

z

s

s

z

z

s

s

y

y

E






























)2(

)2(

)2(

)2(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

r

z

z

z

z

z

z

y

y w

s

s

z

z

s

s

z

z

s

s

z

z

s

s

y

y

E






































)1(

)1(

)1(

)1(

)2(

)2(

)2(

)2(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

Activation function (tanh)

 
 21 x

dx

xd





rw
rwrw (0)z

r

z

z

y

yt r

t

w

s

s

z

z

s

s

y

y

E

w

E




























)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(

)3(3

1

)(

 x

28

Long Short Term Memory (LSTM) network

 Hochreiter and Schmidhuber (1997) proposed the Long Short-Term Memory (LSTM)
cell which includes “a memory unit”:
1) A cell with a number of components that together act similar to a memory cell.
2) Inside one cell, multiple layers called “gates” are used.

1) Forget gate
2) Input gate
3) Output gate

 Long Short Term Memory (LSTM) architecture was motivated to overcome the
problem: error is not back-propagated properly to the end of RNN architecture.

29

Long Short Term Memory (LSTM) network

RNN

 z

1)-(t

r

(t)

z

(t) bzwxwz  x

 y

(t)

yy

(t) bzwy 

30

Long Short Term Memory (LSTM) network

RNN

 z

1)-(t

r

(t)

z

(t) bzwxwz  x

 y

(t)

yy

(t) bzwy 

(t)E

31

Long Short Term Memory (LSTM) network

RNN LSTM

 z

1)-(t

r

(t)

z

(t) bzwxwz  x

 y

(t)

yy

(t) bzwy 

th

th

tC1-tC

1-th

sigmoid:)(

Cell state

Hidden state

 Cell state: a memory of LSTM cell
 Hidden state: an output of this cell

32

LSTM

)hwxw(1-thftxf ft bsigmf 

 Forget gate layer
 Decide how much “Ct-1” is forgotten?
 If “ft” is zero, forget “Ct-1” completely.
 If “ft” is one, do not forget “Ct-1” at all.

sigmoid:)(

xfw

hfw

Long Short Term Memory (LSTM) network: forget gate

33

Long Short Term Memory (LSTM) network: input gate

)hwxwtanh(
~

1-thCtxC Ct bC 

 Input gate layer
 decide how much “ ” is forgotten?

 tanh layer:
 decide which value is updated.

LSTM

)hwxw(1-thitxi it bsigmi 

hiw

xiw

xCw
hCw

tC
~

sigmoid:)(

34

Long Short Term Memory (LSTM) network: update cell

 Update the output cell state of “Ct” by
adding the past cell state of “Ct-1” to
the present cell state of “ ”

LSTM

ttttt CiCfC
~

1  

Hadamard product



























22

11

2

1

2

1

yx

yx

y

y

x

x

tC
~

sigmoid:)(

past
memory

present
memory

35

Long Short Term Memory (LSTM) network: output gate

 Output gate layer
 The output cell state is put through

tanh() and rescaled by the output of
the sigmoid function.

LSTM
)tanh(ttt Coh 

)hwxw(1-thotxo ot bsigmo 

xow

how

tC
sigmoid:)(

36

Long Short Term Memory (LSTM) network: summary

)tanh(ttt Coh 

)hwxw(1-thotxo ot bsigmo 

ttttt CiCfC
~

1  

)hwxwtanh(
~

1-thCtxC Ct bC 

)hwxw(1-thitxi it bsigmi 

)hwxw(1-thftxf ft bsigmf 

xfwhfw
xiw

tC
~

hiw xowhow
xCw

hCw

http://www.suyongeum.com/ML/lectures/LectureW10_20180621_print.pdf
 Refer to Slide 28 for LSTM backpropagation

http://www.suyongeum.com/ML/lectures/LectureW10_20180621_print.pdf

37

Gated Recurrent Unit (GRU)

38

Gated Recurrent Unit (GRU)

 Simpler than LSTM and so training is faster,
 Cell state (C) is replaced by hidden state (h),
 GRU has two gates: update gate (z), reset gate (r).

39

Hand-on Experience

40

Character level language model using RNN

 The implementation is purely based on numpy only

- https://gist.github.com/karpathy/d4dee566867f8291f086

shakespeare.txt

KING HENRY VI I shall you sir;
When princes but friend ….RNN model

Newly generated text

 1115390 characters
 65 unique characters

https://gist.github.com/karpathy/d4dee566867f8291f086

41

RNN review: terminology

42

RNN review: terminology

1) Pure vanilla RNN cell

43

RNN review: terminology

 Number of neurons
in hidden layer

- hidden_size: 100

1) Pure vanilla RNN cell

44

RNN review: terminology

 Input dimension and Output
dimension are same in this case

 There are 65 unique characters including white space.
 One hot encoding : [0, 0, 0, …, 1, …, 0]

 Number of neurons
in hidden layer

- hidden_size: 100

1) Pure vanilla RNN cell

45

RNN review: terminology

 Number of neurons
in hidden layer

- hidden_size: 100

 Number of steps
- seq_length: 25

 Input dimension and Output
dimension are same in this case 1) Pure vanilla RNN cell

 There are 65 unique characters including white space.
 One hot encoding : [0, 0, 0, …, 1, …, 0]

46

Data loading

47

1) Data loading

48

1) Data loading

49

1) Data loading

50

1) Data loading

100

65

100

65

51

1) Data loading

.

F i r s t

i r s t

25

52

1) Data loading

53

1) Data loading

54

Evaluation

55

2) Evaluation: loss calculation

 ps[t]: predicted label which is the output from the previous layer
- e.g., 0.345

 targets[t]: index of the corresponding character. Thus, [target[t], 0] always returns 1

ps target Cross Entropy (error)

0.1, 0.2, 0.7 0, 0, 1 -ln(0.1)*0-ln(0.2)*0-ln(0.7)*1 = 0.357

0.1, 0.6, 0.3 0, 1, 0 -ln(0.1)*0-ln(0.6)*1-ln(0.3)*0 = 0.511

0.3, 0.3, 0.4 1, 0, 0 -ln(0.3)*1-ln(0.3)*0-ln(0.4)*0 = 1.204

example

56

2) Evaluation: loss update

https://gist.github.com/karpathy/d4dee566867f8291f086 (sleebapaul commented on July 27)

 *)1(* LSLSL 

*)(LSLSL 
Loss Smooth Loss

https://gist.github.com/karpathy/d4dee566867f8291f086

57

Sampling

 Generating currently 200 characters

h

y

p softmax

 Selection of a character based on its probability

 h: trained parameters
 seed_ix: random selection of a character
 n: how many characters you want to generate

58

58
Colab: Character level language model using RNN

1) Go to the Colab
 https://colab.research.google.com

2) Select “GITHUB” and copy the link below into
 https://github.com/suyongeum/PMLWS2018_WS4.git

3) Select the notebook in the list
 Nov_20_2018_RNN.ipynb

4) Go to “Runtime” – “Change runtime type”
 Python 3
 GPU

5) Save it into your gdrive
 “File” - “Save a copy in Drive …”

GITHUB

https://colab.research.google.com/
https://github.com/suyongeum/PMLWS2018_WS4.git

59

Backup slides

60

Tacotron: Towards End-to-End Speech synthesis

61

1. Tacotron
2. Deep Voice 2

Model Architecture

62

1. Tacotron
2. Deep Voice 2

Model Architecture

1) Encode

2) Decode

4) Attention

3) Vocoder

Text to Number

63

Model Architecture: 1) Encode

1) Encode

Text to Number

FC-ReLU-Dropout x 2

1-Convolution bank + Highway
network + Bidirectional GRU

64

Model Architecture: 1) Encode

1) Encode

Text to Number

 Convolution bank:
- Normal convolution layer operation with some filters (filter bank)

 Highway network:
- Learning how much input data passes through each layer.
- https://arxiv.org/pdf/1505.00387.pdf

 Bidirectional GRU:
- Estimating a present data point based on not only “past one” but also

“future one”.
- E.g., I like to ?? a soccer.

FC-ReLU-Dropout x 2

1-Convolution Bank + Highway
network + Bidirectional GRU

65

Model Architecture: 2) Decode

66

Model Architecture: 2) Decode

 Recurrent Neural Network
 Input: spectrogram
 Output: spectrogram Visual representation of the spectrum of frequencies

of sound or other signal as they vary with time.

FC-ReLU-Dropout x 2

n spectrogram
estimation

67

Model Architecture: 3) Vocoder

A set of spectrograms are
estimated from decoder

We saw it in the encode part

One of algorithms which convert
from spectrogram to audio.

68

Model Architecture: 4) Attention

1. Tacotron
2. Deep Voice 2

1) Encode

2) Decode

4) Attention

3) Vocoder

Text to Number

69

Attention mechanism: sequence-to-sequence model

 Sequence-to-sequence is a description of a problem where your input is a
sequence and your output is also sequence.

 Machine translation

 Question answering

 Transcription of a photo, a video, or a summary of a document.

 RNN and LSTM are neural network models which address the sequence-to-
sequence problem.

Sutskever et al., 2014, “Sequence to Sequence Learning with Neural Networks”

70

 Sequence-to-sequence is a description of a problem where your input is a
sequence and your output is also sequence.

 Machine translation

 Question answering

 Transcription of a photo, a video, or a summary of a document.

 RNN and LSTM are neural network models which address the sequence-to-
sequence problem.

I, eat, apple

私は りんごを たべます。 I, eat, apple

Attention mechanism: sequence-to-sequence model

Sutskever et al., 2014, “Sequence to Sequence Learning with Neural Networks”

71

 Seq-to-seq model assumes that an input sequence is encoded into the final vector and the
final vector well represents the whole input sequence.

- However, using other encoded vectors seems to be more reasonable when decoding each
part of the sentence.

- E.g. to decode “I” we may pay more attention to the encode after “私は”

Attention mechanism: sequence-to-sequence model

72

Example: original architecture vs with attention mechanism

https://medium.com/datalogue/attention-in-keras-1892773a4f22

 Original architecture: input data is encoded and represented as single unique code
 Architecture with an attention mechanism: individual input data are encoded and represented as multiple codes.

Original architecture An architecture with attention mechanism

73

Architecture with an attention mechanism

https://distill.pub/2016/augmented-rnns/

1ts

jh

tj ,

https://arxiv.org/pdf/1409.0473.pdf

encoder

decoder
1ts ts

tc
RNN family

