Practical Machine Learning

Lecture 6
Principal Components Analysis (PCA)

Dr. Suyong Eum

Where we are
 (

You are going to learn

Why we need PCA
\square How to obtain principal components

- Eigen value decomposition and singular value decomposition
\square SVD: data compression and visualization
\square How to apply PCA for machine learning

Principal Component Analysis (PCA): definition

A statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.

Principal Component Analysis (PCA): intuition

\square How to select a principal component?

- One that captures the largest variance of the data points.
\square Why?
- Because we want to clearly see how each data point is related (close) each other.
- Then, which one (PC1 or PC2) is better?

How to find the principal components showing the largest variance?

$$
\mathrm{X}=\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\mathrm{x}_{3} \\
\mathrm{x}_{4} \\
\mathrm{x}_{5} \\
\mathrm{x}_{6}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -2 \\
-1 & -1 \\
1 & -1 \\
-1 & 1 \\
1 & 1 \\
2 & 2
\end{array}\right]
$$

$\square \operatorname{cov}(\mathrm{x})=V \Lambda V^{T}$

- Distance to data points from the mean along the axis of " v_{1} "

$$
=[-2 \sqrt{2},-\sqrt{2}, 0,0, \sqrt{2}, 2 \sqrt{2}] \quad \text { variance }=4
$$

- Distance to data points from the mean along the axis of " v_{2} "

$$
=[0,0,-\sqrt{2}, \sqrt{2}, 0,0] \quad \text { variance }=0.8
$$

$\square \operatorname{cov}(\mathrm{X})=\left[\begin{array}{ll}2.4 & 1.6 \\ 1.6 & 2.4\end{array}\right] \quad \begin{aligned} & \text { variance along the axis of " } x_{1} \text { " } \\ & \text { variance along the axis of " } x_{2} \text { " }\end{aligned}$

- " m_{i} " shows the distance between 0 (mean) to the point where " x_{i} " is projected on the vector " V ".

$$
\mathrm{m}_{i}=\mathrm{x}_{i} \mathrm{~V}
$$

Let's define the variance of data points " m "

$$
\operatorname{var}(\mathrm{m})=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathrm{~m}_{\mathrm{i}}-\mu \mathrm{v}\right)^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathrm{x}_{\mathrm{i}} \mathrm{v}\right)^{2}
$$

\square Let's maximize the variance with a constraint (v must be an
 unit vector). Then, see what it would be.

$$
\max \frac{1}{N-1} \sum_{i=1}^{N}\left(\mathrm{x}_{\mathrm{i}} \mathrm{v}\right)^{2} \quad \text { s.t. } \quad \sum_{\mathrm{i}=1}^{d} \mathrm{v}_{\mathrm{i}}^{2}=1
$$

\square Let's convert the constrained problem to unconstrained problem using Lagrange method (again!).

$$
L(\mathrm{v})=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathrm{x}_{\mathrm{i}} \mathrm{v}\right)^{2}-\lambda_{i}\left(\sum_{i=i}^{d} \mathrm{v}_{i}^{2}-1\right)
$$

\square We look for the vector " v " which maximizes the variance. Thus, differentiating the above with respect to " v "

$$
\frac{\partial L(\mathrm{v})}{\partial \mathrm{v}}=\frac{2}{N-1} \sum_{i=1}^{N}\left(\mathrm{x}_{\mathrm{i}} \mathrm{v}\right)\left(\mathrm{x}_{\mathrm{i}}\right)-2 \lambda_{i}\left(\sum_{i=i}^{d} \mathrm{v}_{i}\right)=0
$$

- When " v " is selected to maximize the variance, covariance matrix becomes equivalent to its own eigen value.
- Eigen value has diagonal elements, which represent variances along eigen vectors - no correlation.

How to find the principal components showing the largest variance?

1) Find the covariance matrix of data points.
2) Obtain the eigen values and vectors of the covariance matrix: eigen decomposition.
3) Sort the eigen vectors in descending order in terms of their corresponding eigen values.

- an eigen vector with the largest eigen value becomes the first principal component.

$\gg[$ vec, val $]=\operatorname{eig}(\operatorname{cov}(x))$
vec $=$
$2^{\text {nd }}$ principal component

How to find the principal components showing the largest variance?

\square Actually, there is a more convenient way of doing it (finding eigen vectors).
\square It is called "Singular Value Decomposition" or SVD.

Eigen decomposition

$$
\mathrm{X}^{\mathrm{T}} \mathrm{X}=\mathrm{V} \Lambda \mathrm{~V}^{\mathrm{T}}
$$

\gg [vec, val] $=\operatorname{eig}(\operatorname{cov}(x))$	
vec $=$	
-0.70711	0.70711
0.70711	0.70711
val $=$	
Diagonal Matrix	
0.80000	0
0	4.00000


```>> [vec, val]=eig(transpose(x)*x) vec =```	
-0.70711	0.70711
0.70711	0.70711
val =	
Diagonal Matrix	
4.0000	0
	20.0000

Singular Value Decomposition (SVD)

$$
\mathrm{X}=\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}}
$$

$$
\begin{aligned}
\mathrm{X}^{\mathrm{T}} \mathrm{X} & =\left(U \Sigma \mathrm{~V}^{\mathrm{T}}\right)^{\mathrm{T}}\left(\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}}\right) \\
& =\mathrm{V} \Sigma^{\mathrm{T}} \mathrm{U}^{\mathrm{T}} U \Sigma \mathrm{~V}^{\mathrm{T}} \\
& =\mathrm{V} \Sigma^{2} V^{\mathrm{T}} \quad \Lambda=\Sigma^{2}
\end{aligned}
$$



Eigen value


Singular value

## How to find the principal components showing the largest variance?

$\square$ Actually, there is a more convenient way of doing it (finding eigen vectors).
$\square$ It is called "Singular Value Decomposition" or SVD.

Eigen decomposition
$\mathrm{X}^{\mathrm{T}} \mathrm{X}=\mathrm{V} \Lambda \mathrm{V}^{\mathrm{T}}$

Singular Value Decomposition (SVD)

$$
\mathrm{X}=\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}}
$$

>> x		
$\mathrm{x}=$		
-2	-2	
-1	-1	
	-1	
-1	1	
1	1	
2	2	
$\begin{aligned} & \gg \operatorname{cov}(x) \\ & \text { ans }= \end{aligned}$		
	000	1.6000
	000	2.4000



## Singular Value Decomposition (SVD): data compression

## $\mathrm{X} \in \mathbf{R}^{\mathrm{n} \times \mathrm{m}}$

$\mathrm{X}=\mathrm{U} \mathrm{V}^{\mathrm{T}}$

$$
\begin{aligned}
& \mathrm{U} \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}} \\
& \Sigma \in \mathbf{R}^{\mathrm{n} \times \mathrm{m}} \\
& \mathrm{~V} \in \mathbf{R}^{\mathrm{m} \times \mathrm{m}}
\end{aligned}
$$



## Singular Value Decomposition (SVD): data compression

$$
\begin{aligned}
& \mathrm{X} \in \mathbf{R}^{\mathrm{n} \times \mathrm{m}} \\
& \mathrm{X}=\mathrm{U} \mathrm{~V}^{\mathrm{T}} \\
& \mathrm{U} \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}} \\
& \Sigma \in \mathbf{R}^{\mathrm{n} \times \mathrm{m}} \\
& \mathrm{~V} \in \mathbf{R}^{\mathrm{m} \times \mathrm{m}} \\
& \mathrm{X}=u_{1} \sigma_{1} v_{1}^{\mathrm{T}}+u_{2} \sigma_{2} v_{2}^{\mathrm{T}} \\
& \text { - New coordination system which has two basis (v1 and v2) }
\end{aligned}
$$

## Singular Value Decomposition (SVD): data compression





## Back to PCA: dimension reduction



$$
\mathrm{v}_{2}=\left[\begin{array}{c}
-0.70711 \\
0.70711
\end{array}\right]
$$



$$
\left[\begin{array}{cc}
-2 & -2 \\
-1 & -1 \\
1 & -1 \\
-1 & 1 \\
1 & 1 \\
2 & 2
\end{array}\right]=\left[\begin{array}{lll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{ll}
\sigma_{1} & \\
& \sigma_{2}
\end{array}\right]\left[\begin{array}{cc}
v_{1}^{T} \\
\hdashline v_{2}^{T}
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
-2 \sqrt{2} & 0 \\
-\sqrt{2} & 0 \\
0 & 0 \\
0 & 0 \\
\sqrt{2} & 0 \\
2 \sqrt{2} & 0
\end{array}\right]
$$

2 dimension data points can be represented
into one dimension space $\left(\mathrm{v}_{1}\right)$

## Back to PCA: dimension reduction



$$
\left[\begin{array}{cc}
-2 & -2 \\
-1 & -1 \\
1 & -1 \\
-1 & 1 \\
1 & 1 \\
2 & 2
\end{array}\right]=\left[\begin{array}{lll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{ll}
\sigma_{1} & \\
& \sigma_{2}
\end{array}\right]\left[\begin{array}{cc}
v_{1}^{T} \\
v_{2}^{T}
\end{array}\right]
$$

2 dimension data points can be represented into one dimension space $\left(\mathrm{v}_{1}\right)$

$1^{\text {st }}$ Principal Component


Set the " $\mathrm{v}_{2}$ " into zero
$\mathrm{X} _$rot_zero $=\mathrm{X} _$rot $\cdot \mathrm{V}^{-1}$


$$
\begin{aligned}
\mathrm{X}^{\prime} & =\mathrm{X} _ \text {rot_zero } \cdot \mathrm{V}^{-1} \\
& =\mathrm{X} _ \text {rot_zero } \cdot \mathrm{V}^{\mathrm{T}}
\end{aligned}
$$

## Back to PCA: example



## How to use PCA for machine learning?

A digit number with 64 dimension can be shown in 2 dimension space ( $v_{1}$ and $v_{2}$ ).



$$
\begin{gathered}
\left.\begin{array}{cccc}
\mathrm{v}_{1} & \mathrm{v}_{2} \\
a_{11} & a_{12} & \cdots & a_{1 m} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right]
\end{gathered}
$$

## How to use PCA for machine learning？ <br> ？

Each digit number has 8 by $8=64$ dimensions．
$\square$ After SVD，the first two principal components are selected，and the data points with 64 dimension are plotted in two dimension．

$$
\begin{aligned}
& \text { sions. } \\
& \text { eats are selected, and the data } \\
& \text { wo dimension. }
\end{aligned}
$$



$$
1
$$ points with 64 dimension are plated in two dimension．

．．．


#### Abstract

 


 Cutererer
 $+$


 －



## －

 －


正



```
 *
```

```
 *
```

```
 *
```


## －

## $\checkmark$

 O號

## One that you need to be careful when carrying out PCA

Centering the data before applying PCA.
$\square$ Normalizing or standardizing the data when features have different scale.

	population	area
Country 1	$5^{*} 10^{\wedge 7}$	92
Country 2	$2^{* 10^{\wedge} 7}$	74
...	$\ldots$	$\ldots$
Country n	$5{ }^{*} 10^{\wedge} 8$	150


	feature1	feature2	$\cdots$	feature m
Data 1				
Data 2				
$\vdots$				
Data n	$\left[\begin{array}{cccc}a_{11} \\ \vdots \\ a_{m 1}\end{array}\right.$	$a_{12}$   $\vdots$	$\cdots$	$a_{1 n}$
$a_{m 2}$	$\cdots$	$\vdots$		
	That needs to be normalized			

## Backup Slides

## Singular Value Decomposition (SVD): data compression



```
img = imread("sample_BW.png")[:,:]
imshow(img)
show()
Top 100
U,S,Vt = svd(img)
S = resize(S, [m,1])*eye(m,n)
imshow(dot(U[:,0:100], dot(S[0:100,0:100], Vt[0:100,:])))
show()
```

