Practical Machine Learning

Lecture 5
 Support Vector Machine (SVM) and Kernel trick

Dr. Suyong Eum

A question from the last class

How do we infer $\mathrm{p}(\mathrm{Z} \mid \mathrm{X})$ using $q(Z)$?

- Only data X are given
- $p(X, Z)$ is known

$$
p(Z \mid X)=\frac{p(X, Z)}{p(X)}=\frac{p(X, Z)}{\sum_{Z} p(X, Z)}
$$

- When the variable z is continuous
- When the number of variables z is many (?)

	Resource	Time	Accuracy
Laplace approach (Gaussian approximation)	Good	Good	Worse
Sampling (Numerical approach)	Worse	Worse	Good
Variational Inference (Analytical approach)	Medium	Medium	Medium

Laplace approach

\square Finding the mode of the posterior distribution and then fitting a Gaussian centered at that mode.

$$
\begin{aligned}
& p(z) \propto \exp \left(-z^{2} / 2\right)\left(1+\exp ^{-20 z-4}\right)^{-1} \\
& p(z)=\frac{1}{C} f(z) \quad C=\int f(z) d z \quad \begin{array}{l}
\text { Normalizing factor, } \\
\text { which is unknown }
\end{array} \\
& \left.\frac{d f(z)}{d z}\right|_{z=z_{0}}=0 \quad A=-\left.\frac{d^{2}}{d z^{2}} \ln f(z)\right|_{z=z_{0}} \\
& \text { It becomes mean of } q(z) \quad \text { It becomes precision of } q(z)
\end{aligned}
$$

$$
\mathrm{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}
$$

$$
q(z)=\left(\frac{A}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{A}{2}\left(z-z_{0}\right)^{2}\right\}
$$

$$
\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} \ln \mathrm{~N}\left(x \mid \mu, \sigma^{2}\right)=-\frac{1}{\sigma^{2}}
$$

Sampling approach

Sampling approach

$$
p(B, E, A, J, M)=p(B) p(E) p(A \mid B, E) p(J \mid A) p(M \mid A)
$$

$$
p(B, E, J \mid A, M) ?
$$

$$
p(E \mid B, A, J, M)=p(E \mid A, B)
$$

$$
\begin{aligned}
p(E, A, B) & =p(A \mid B, E) p(B) p(E) \\
p(E, A, B) & =p(E \mid A, B) p(A, B) \\
& =p(E \mid A, B) p(A \mid B) p(B)
\end{aligned}
$$

$$
p(A \mid B, E) p(B) p(E)=p(E \mid A, B) p(A \mid B) p(B)
$$

$$
p(E \mid A, B)=\frac{p(A \mid B, E) p(E)}{\sum_{E} p(A \mid B, E)}
$$

Variational inference

The idea is

- Finding $p(Z \mid X)$ by minimizing Kullback divergence to $q(Z)$
- Minimizing $K L$ between $p(Z \mid X)$ and $q(Z)$ is equivalent to maximizing a function where the conditional distribution $p(Z \mid X)$ is replaced with the joint distribution $p(Z, X)$.
- Factorizing the joint distribution on the assumption that the latent variables Z are independent.
- Developing the derivation in terms of one latent variable on the assumption of the other latent variables are known.
- Then, do some algebra..
\square Refer the backup slides which include the derivation

Where we are
 Where we are

You are going to learn

\square An idea of Support Vector Machine (SVM)

- Problem formulation of SVM
- Linear classification: Hard Margin SVM
\square Non-linear classification
- Soft Margin SVM
- Kernel trick

Why Support Vector Machine?

\square Most widely used classification approach (practical)

- Linearly separable data set
- Linearly separable data set with a few violation
- Non-linearly separable data set
- Supported by well defined mathematical theories
- Geometry,
- Optimization,
- Quadratic programming,
- Lagrange method,
- Kernel, etc.
- Kernel,

\square

Abstract

？ ？

Which one is better for classification？

，
．

```
                                O
``` \(\square\)


\(\overline{2}\)
．

． ．
one is better for class

\section*{Terminology used in this lecture}

\[
y(\mathrm{x})=w_{2} x_{2}+w_{1} x_{1}+w_{0}
\]
\[
\begin{array}{ll}
\boldsymbol{X}_{2} & y\left(\mathrm{x}^{\mathrm{a}}\right)=w_{2} x_{2}^{\mathrm{a}}+w_{1} x_{1}^{\mathrm{a}}+w_{0}=0 \\
y\left(\mathrm{x}^{\mathrm{b}}\right)=w_{2} x_{2}^{\mathrm{b}}+w_{1} x_{1}^{\mathrm{b}}+w_{0}=0
\end{array}
\]
\[
\begin{aligned}
y\left(\mathrm{x}^{a}\right)-y\left(\mathrm{x}^{b}\right) & =w_{2} x_{2}^{a}+w_{1} x_{1}^{a}+w_{0}-w_{2} x_{2}^{b}-w_{1} x_{1}^{b}-w_{0} \\
& =w_{2}\left(x_{2}^{a}-x_{2}^{b}\right)+w_{1}\left(x_{1}^{a}-x_{1}^{b}\right) \\
& =\left[w_{1}, w_{2}\right]\left[\begin{array}{c}
x_{1}^{a}-x_{1}^{b} \\
x_{2}^{a}-x_{2}^{b}
\end{array}\right] \quad(1 \times 2)(2 \times 1)=(1 \times 1) \\
0 & =\mathrm{w}^{\mathrm{T}}\left(\mathrm{x}^{a}-\mathrm{x}^{b}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{x}=\left(x_{1}, x_{2}\right) \\
& \mathrm{w}=\left(w_{1}, w_{2}\right)
\end{aligned}
\]
\[
\mathrm{w}^{\mathrm{T}} \perp\left(\mathrm{x}^{a}-\mathrm{x}^{b}\right)
\]

Vector on the decision boundary

\section*{Some geometry}
\(\square\) Inner product
\(\left(x_{1}^{a}, x_{2}^{a}\right) \cdot\left(w_{1}, w_{2}\right)=\left\|\left(x_{1}^{a}, x_{2}^{a}\right)\right\|\left\|\left(w_{1}, w_{2}\right)\right\| \cos \theta\)
\[
\cos \theta=\frac{\|d\|}{\left\|\left(x_{1}^{a}, x_{2}^{b}\right)\right\|} \Rightarrow\|d\|=\left\|\left(x_{1}^{a}, x_{2}^{b}\right)\right\| \cos \theta
\]

\section*{\(\square \cos \theta\) definition}
\[
\left\|\left(w_{1}, w_{2}\right)\right\|\|d\|=\left(x_{1}^{a}, x_{2}^{b}\right) \cdot\left(w_{1}, w_{2}\right)
\]
\[
\|d\|=\frac{w_{2} x_{2}^{a}+w_{1} x_{1}^{a}}{\left\|\left(w_{1}, w_{2}\right)\right\|}=\frac{-w_{0}}{\left\|\left(w_{1}, w_{2}\right)\right\|}
\]
\[
\|d\|=\frac{-w_{0}}{\|\mathrm{w}\|}
\]

\footnotetext{

}

 -

\section*{Margin distance}
\[
\mathrm{X}^{c}=\mathrm{X}^{b}+\|r\| \frac{\mathrm{W}}{\|\mathrm{~W}\|} \text { Unit vector showing } \begin{gathered}
\text { Size of the vector } \\
\left(\mathrm{x}^{\mathrm{b}}->\mathrm{x}^{c}\right)
\end{gathered} \text { the direction only }
\]
\[
w_{2} x_{2}+w_{1} x_{1}+w_{0}=y(\mathrm{x})
\]
\(\square\) Let's multiply \(\mathrm{w}^{\top}\) and add \(\mathrm{w}_{0}\) in both sides.
\[
\begin{aligned}
& \mathrm{w}^{\mathrm{T}} \mathrm{x}^{\mathrm{c}}+\mathrm{w}_{0}=\mathrm{w}^{\mathrm{T}} \mathrm{x}^{b}+\mathrm{w}_{0}+\mathrm{w}^{\mathrm{T}}\|r\| \frac{\mathrm{W}}{\|\mathrm{~W}\|} \\
& \mathrm{y}\left(\mathrm{x}^{\mathrm{c}}\right)=\mathrm{w}^{\mathrm{T}}\|r\| \frac{\mathrm{W}}{\|\mathrm{~W}\|} \\
& \|r\|=\frac{\mathrm{y}\left(\mathrm{x}^{\mathrm{c}}\right)}{\|\mathrm{w}\|} \quad \begin{array}{c}
\text { Let's say } \\
\|r\|=\frac{1}{\|\mathrm{w}\|}
\end{array}
\end{aligned}
\]
\[
\begin{array}{r}
\boldsymbol{X}_{2} \\
w_{2} \mathrm{x}_{2}+w_{1} x_{1}+w_{0}=y(\mathrm{X}) \\
\mathrm{w}^{\mathrm{T}} \mathrm{x}^{c}+w_{0}=y\left(\mathrm{x}^{\mathrm{c}}\right) \\
\mathrm{w}^{\mathrm{T} \mathrm{x}^{b}+w_{0}=0}
\end{array}
\]

\section*{Problem formulation}
- Finding a decision boundary which maximizes the margin.
\(\max \|r\|=\frac{1}{\|\mathrm{w}\|}\)
s.t.
\[
t_{n} y\left(\mathrm{x}_{n}\right)>0 \quad \begin{aligned}
& \text { Every data points are } \\
& \text { classified correctly. }
\end{aligned}
\]
\[
\begin{cases}t_{n}=+1, & y\left(\mathrm{x}_{n}\right)>0 \\ t_{n}=-1, & y\left(\mathrm{x}_{n}\right)<0\end{cases}
\]
\[
w_{2} x_{2}+w_{1} x_{1}+w_{0}=0
\]

\section*{Problem formulation}

Let's make it a quadratic programming problem.
\[
\max \frac{1}{\|\mathrm{w}\|}
\]
s.t. \(\quad t_{n} y\left(\mathrm{x}_{n}\right)>0, \quad \forall n\)

Do you remember?
\(\max \frac{1}{\|\mathrm{w}\|}\) Let's say
\(\left|\mathrm{y}\left(\mathrm{x}^{\mathrm{c}}\right)\right|=1\)
s.t. \(\quad t_{n} \mathrm{y}\left(\mathrm{x}_{n}\right) \geq 1, \quad \forall n\)
meaning that any data point is away from the decision boundary at least 1

\[
w_{2} x_{2}+w_{1} x_{1}+w_{0}=0
\]

Finally
\[
\begin{array}{ll}
\min & \frac{1}{2}\|\mathrm{w}\|^{2} \\
\text { s.t. } & t_{n}\left(\mathrm{w}^{\mathrm{T}} \mathrm{x}_{n}+w_{0}\right) \geq 1, \quad \forall n
\end{array}
\]

\section*{Quadratic programming}

\section*{How about non-linearly separable case?}
\[
\begin{array}{ll}
\min & \frac{1}{2}\|\mathrm{w}\|^{2} \\
\text { s.t. } & t_{n}\left(\mathrm{w}^{\mathrm{T}} \mathrm{x}_{n}+w_{0}\right) \geq 1, \quad \forall n
\end{array}
\]

\section*{Approaches}

Option 1 Soft margin SVM
Option 2 Kernel trick

\begin{tabular}{|l|l|}
\hline & \multicolumn{1}{|c|}{ Approaches } \\
\hline Option 1 & Soft margin SVM \\
\hline Option 2 & Kernel trick \\
\hline
\end{tabular}

\section*{Soft margin SVM}

\section*{Option 1: soft margin SVM}
Remember the constraint below?
\[
t_{n}\left(\mathrm{w}^{\mathrm{T}} \mathrm{x}_{n}+w_{0}\right) \geq 1, \quad \forall n
\]
\(\square\) For the data points which are non-separable, we relax the constraint:
\[
t_{n}\left(\mathrm{w}^{\mathrm{T}} \mathrm{x}_{n}+w_{0}\right) \geq 1-\varepsilon_{n} \quad \forall n \quad \varepsilon_{n} \geq 0
\]
\(\square\) It says that the distance between a data point and the decision boundary is allowed to be less than 1.
\(\square \varepsilon_{n}\) is called slack variables.
\(\square\) Question. Where is a data point when \(\varepsilon_{n}=1\) ?

\section*{Option 1: soft margin SVM}

So we have the constraint below. How about the objective function?
\[
t_{n}\left(\mathrm{w}^{\mathrm{T}} x_{n}+w_{0}\right) \geq 1-\varepsilon_{n} \quad \forall n \quad \varepsilon_{n} \geq 0
\]
\(\square\) We want to minimize the slack.
\(\min \frac{1}{2}\|\mathrm{w}\|^{2}+C \sum_{n} \varepsilon_{n}\)
\(\square\) If " \(C\) " is small, the slack contributes more
1) Prefer large margin
2) May cause large \# of misclassified data points.
\(\square\) If "C" is large, the slack contributes less
1) Prefer less \# of misclassified data points.
2) May cause small margin.

\section*{Option 1: soft margin SVM}
\[
\begin{gathered}
\mathbf{w}^{\mathrm{T}} \mathbf{X}+w_{0}=1 \\
\mathbf{w}^{\mathrm{T}} \mathbf{X}+w_{0}=0 \\
\mathbf{w}^{\mathrm{T}} \mathbf{X}+w_{0}=-1
\end{gathered}
\]
\(\square\) The formulation finally becomes
\[
\begin{aligned}
& \min \frac{1}{2}\|\mathrm{w}\|^{2}+C \sum_{n} \varepsilon_{n} \\
& \text { s.t. } \\
& t_{n}\left(\mathrm{~W}^{\mathrm{T}} X_{n}+w_{0}\right) \geq 1-\varepsilon_{n}, \forall n \\
& \varepsilon_{n} \geq 0
\end{aligned}
\]

都

Kernel trick

\section*{Lagrange method for an optimization problem with inequality constraints}

\section*{\(\min x^{2}\) \\ s.t. \(\quad x \geq b\)}

\[
\begin{aligned}
& \min _{x} \max _{\lambda} x^{2}-\lambda(x-b) \\
& \text { s.t. } \quad \lambda \geq 0
\end{aligned}
\]
- Minima is zero when \(b \leq 0\)
- Minima is " \(b^{2 \prime}\) " when \(b>0\)
- It means at optima: \(\lambda(\mathrm{x}-\mathrm{b})=0\) (complementary slackness)
- Maximizing \(\lambda\) results in minimizing the objective value
- \(\lambda \geq 0\) (it should be because \(x-b \geq 0\))

\section*{Convert the quadratic problem in SVM to Lagrange optimization problem}

\section*{KKT conditions}

Primal problem
) Stationarity condition
\[
\frac{\partial}{\partial \mathrm{w}} \frac{1}{2} \mathrm{w}^{T} \mathrm{w}-\frac{\partial}{\partial \mathrm{w}} \sum_{n=1}^{n} \lambda_{n}\left(t_{n}\left(\mathrm{w}^{\mathrm{T}} x_{n}+\mathrm{w}_{0}\right)-1\right)=0
\]
2) Complementary slackness condition
\[
\lambda_{n}\left(t_{n}\left(\mathrm{w}^{\mathrm{T}} x_{n}+w_{0}\right)-1\right)=0
\]
3) Duality feasibility condition
\[
\lambda_{n} \geq 0
\]
\[
\begin{aligned}
& \min _{\mathrm{w}} \max _{\lambda} \frac{1}{2} \mathrm{w}^{T} \mathrm{~W}-\sum_{n=1}^{n} \lambda_{n}\left(t_{n}\left(\mathrm{w}^{\mathrm{T}} x_{n}+w_{0}\right)-1\right) \\
& \text { s.t. } \quad \lambda_{n} \geq 0
\end{aligned}
\]
\(\square\) We would like to convert again the optimization problem above into another form, which provides same results.
- Because we want to solve the optimization problem in term of "lagrange multiplier \(\left(\lambda_{n}\right)\) ".
\[
\begin{aligned}
& \max _{\lambda} \min _{\mathrm{w}} \frac{1}{2} \mathrm{w}^{T} \mathrm{w}-\sum_{n=1}^{n} \lambda_{n}\left(t_{n}\left(\mathrm{w}^{\mathrm{T}} x_{n}+w_{0}\right)-1\right) \\
& \text { s.t. } \lambda_{n} \geq 0
\end{aligned}
\]

\section*{Dual problem of the quadratic problem: applying stationarity condition}
\[
\begin{aligned}
& \max _{\lambda} \min _{\mathrm{w}, \mathrm{w}_{0}} L\left(\mathrm{w}, \mathrm{w}_{0}, \lambda\right)=\frac{1}{2} \mathrm{w}^{\mathrm{T}} \mathrm{w}-\sum_{n=1}^{N} \lambda_{n}\left(t_{n}\left(\mathrm{w}^{\mathrm{T}} x_{n}+w_{0}\right)-1\right) \\
& \mathrm{W}=\sum_{n=1}^{N} \lambda_{n} t_{n} x_{n} \quad \sum_{n=1}^{N} \lambda_{n} t_{n}=0 \\
& L(\lambda)=\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_{n} t_{m} \lambda_{n} \lambda_{m} \mathrm{X}_{n}^{T} \mathrm{X}_{m}-\sum_{n=1}^{N} \sum_{m=1}^{N} t_{n} t_{m} \lambda_{n} \lambda_{m} \mathrm{X}_{n}^{T} \mathrm{X}_{m}-\sum_{n=1}^{N} \lambda_{n} t_{n} w_{0}+\sum_{n=1}^{N} \lambda_{n} \\
& \max _{\lambda} L(\lambda)=\sum_{n=1}^{N} \lambda_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_{n} t_{m} \lambda_{n} \lambda_{m} \mathrm{x}_{n}^{T} \mathrm{x}_{m}
\end{aligned}
\]
\[
\begin{aligned}
& \max _{\lambda} L(\lambda)=\sum_{n=1}^{N} \lambda_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_{n} t_{m} \lambda_{n} \lambda_{m} \mathrm{x}_{n}^{T} \mathrm{x}_{m} \\
& \text { s.t. } \quad \lambda_{n} \geq 0, \quad \sum_{n=1}^{N} \lambda_{n} t_{n}=0 \\
& \min _{\lambda} L(\lambda)=\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_{n} t_{m} \lambda_{n} \lambda_{m} x_{n}^{T} x_{m}-\sum_{n=1}^{N} \lambda_{n} \\
& \text { s.t. } \quad \lambda_{n} \geq 0, \quad \sum_{n=1}^{N} \lambda_{n} t_{n}=0
\end{aligned}
\]
\(\square\) Again, the optimization problem becomes a quadratic programming problem.

\section*{Let's summarize}
\[
\begin{gathered}
\min _{\lambda} L(\lambda)=\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_{n} t_{m} \lambda_{n} \lambda_{m} x_{n}^{T} \mathrm{x}_{m}-\sum_{n=1}^{N} \lambda_{n} \\
\text { s.t. } \quad \lambda \geq 0, \quad t^{T} \lambda=0
\end{gathered}
\]
\(\square\) The solution from the quadratic programming is "lagrange multipliers" \(\left(\lambda_{n}\right)\)
\(\square\) Many of the solutions (lagrange multipliers) are zero
\(\square\) Complementary slackness (one of KKT conditions) should be satisfied.
\[
\lambda_{n}\left(t_{n}\left(\mathrm{w}^{\mathrm{T}} x_{n}+w_{0}\right)-1\right)=0
\]
\(\square\) In other words, if \(\lambda_{n}\) are not zero, \(\left(t_{n}\left(w_{t} x_{n}+w_{0}\right)-1\right)\) should be zero where corresponding data points should be support vectors.
\(\square\) With the non-zero \(\lambda_{n}\), w and \(w_{0}\) can be calculated using \(t_{n}\left(w_{t} x_{n}+w_{0}\right)=1\)
\[
\mathrm{w}=\sum_{n=1}^{N} \lambda_{n} t_{n} x_{n} \quad w_{0}=t_{n}-\sum_{n=1}^{N} \lambda_{n} t_{n} x_{n} x_{n}
\]

\section*{Kernel trick}
\[
\begin{aligned}
& \min \frac{1}{2} \mathrm{w}^{T} \mathrm{~W} \\
& \text { s.t. } t_{n}\left(\mathrm{w}^{\mathrm{T}} x_{n}+w_{0}\right) \geq 1
\end{aligned} \quad \min _{\lambda} L(\lambda)=\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_{n} t_{m} \lambda_{n} \lambda_{m} \mathrm{x}_{n}^{T} \mathrm{x}_{m}-\sum_{n=1}^{N} \lambda_{n}
\]
\(\square\) If data \(x_{n}\) are not linearly separable, what should we do?

Space Z

\section*{Kernel trick}
\(\square\) The idea of Kernel trick begins from here: to find the scalar values (the inner product of two vectors: \(z_{n}\) and \(z_{m}\)) and so we can formulate the quadratic problem which can be linearly separable.

\[
\begin{gathered}
\min _{\lambda} L(\lambda)=\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_{n} t_{m} \lambda_{n} \lambda_{m} x_{n}^{T} \mathrm{x}_{m}-\sum_{n=1}^{N} \lambda_{n} \\
\text { s.t. } \quad \lambda \geq 0, \quad t^{T} \lambda=0
\end{gathered}
\]

Space X
\(\square\)

\[
\begin{gathered}
\min _{\lambda} L(\lambda)=\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_{n} t_{m} \lambda_{n} \lambda_{m} z_{n}^{T} z_{m}-\sum_{n=1}^{N} \lambda_{n} \\
\text { s.t. } \lambda \geq 0, \quad t^{T} \lambda=0
\end{gathered}
\]

Space Z

\[
=1
\]
\[
2+m+a+m
\]

路

\section*{Kernel trick}
\(\square\) Kernel function \(K()\) is a function which returns the scalar values (the inner product of two vectors:
\(z_{n}\) and \(z_{m}\) in \(Z\) space) when the data points (\(x_{n}\) and \(x_{m}\) in \(X\) space) are given.
\[
K\left(\mathrm{x}_{n}^{T}, \mathrm{x}_{m}\right)=\phi\left(\mathrm{x}_{n}^{T}\right) \phi\left(\mathrm{x}_{m}\right)=\mathrm{z}_{n}^{T} \mathrm{z}_{m}
\]
Space Z
\[
2
\]
\[
-
\]
\(\square\) \(K\left(\mathrm{X}_{n}^{T}, \mathrm{X}_{m}\right)=\phi\left(\mathrm{X}_{n}^{T}\right) \phi\left(\mathrm{X}_{m}\right)=\mathrm{Z}_{n}^{T} \mathrm{Z}_{m}\)

\(\square\) With the Kernel function defined previously, we want to change the quadratic problem as follows:
- Because the Kernel function is a function of data points (\(x_{n}\) and \(x_{m}\)) which we already have.
\[
\begin{gathered}
\min _{\lambda} L(\lambda)=\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_{n} t_{m} \lambda_{n} \lambda_{m} z_{n}^{T} z_{m}-\sum_{n=1}^{N} \lambda_{n} \\
\text { s.t. } \quad \lambda \geq 0, \quad t^{T} \lambda=0
\end{gathered}
\]
\[
\begin{aligned}
\min _{\lambda} L(\lambda) & =\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_{n} t_{m} \lambda_{n} \lambda_{m} \mathrm{~K}\left(\mathrm{x}_{n}^{T} \mathrm{x}_{m}\right)-\sum_{n=1}^{N} \lambda_{n} \\
\text { s.t. } & \lambda \geq 0, \quad t^{T} \lambda=0
\end{aligned}
\]
\[
\min _{\lambda} L(\lambda)=\frac{1}{2} \lambda^{T}\left[\begin{array}{cccc}
t_{1} t_{1} K\left(\mathrm{x}_{1}, \mathrm{x}_{1}\right) & t_{1} t_{2} K\left(\mathrm{x}_{1}^{T}, \mathrm{x}_{2}\right) & \cdots & t_{1} t_{N} K\left(\mathrm{x}_{1}^{T}, \mathrm{x}_{N}\right) \\
t_{2} t_{1} K\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right) & t_{2} t_{2} K\left(\mathrm{x}_{2}^{T}, \mathrm{x}_{2}\right) & \cdots & t_{2} t_{N} K\left(\mathrm{x}_{2}^{T}, \mathrm{x}_{N}\right) \\
\ldots & \cdots & \cdots & \cdots \\
t_{N} t_{1} K\left(\mathrm{x}_{N} \mathrm{x}_{1}\right) & t_{N} t_{2} K\left(\mathrm{x}_{N}^{T}, \mathrm{x}_{2}\right) & \cdots & t_{N} t_{N} K\left(\mathrm{x}_{N}^{T}, \mathrm{x}_{N}\right)
\end{array}\right] \lambda+\left(-1^{T}\right) \lambda
\]
- Now you have a function, which classifies a data point in z space without mapping
the data point to \(z\) space at all.
\(\square\) Do you see why it is called a trick?
\[
\min _{\lambda} L(\lambda)=\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_{n} t_{m} \lambda_{n} \lambda_{m} K\left(\mathrm{x}_{n}^{T} \mathrm{x}_{m}\right)-\sum_{n=1}^{N} \lambda_{n}
\]
\[
\text { s.t. } \quad \lambda \geq 0, \quad t^{T} \lambda=0
\]
\(\mathrm{W}=\sum_{z_{n} \in S V} \lambda_{n} t_{n} \mathrm{z}_{n} \quad w_{0}=t_{n}-\sum_{z_{n} \in S V} \lambda_{n} t_{n} z_{n} z_{n}=t_{n}-\sum_{z_{n} \in S V} \lambda_{n} t_{n} K\left(\mathrm{x}_{n}, \mathrm{x}_{n}\right)\)
\(\operatorname{sign}\left(\mathrm{w}^{\mathrm{T}} \mathrm{z}+\mathrm{w}_{0}\right)\)
\[
\begin{aligned}
& \operatorname{sign}\left(\sum \lambda_{n} t_{n} \mathrm{z}_{n} \mathrm{z}+t_{n}-\sum_{z_{n} \in S V} \lambda_{n} t_{n} K\left(\mathrm{x}_{n}, \mathrm{x}_{n}\right)\right) \\
& \operatorname{sign}\left(\sum \lambda_{n} t_{n} K\left(x_{n}, x\right)+t_{n}-\sum \lambda_{n} t_{n} K\left(x_{n}, x_{n}\right)\right)
\end{aligned}
\]

\section*{Polynomial kernel of degree 2}

Space X
\[
\begin{aligned}
K(\mathrm{x}, y) & =(\mathrm{xy})^{2} \\
& =\left(\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)\right)^{2} \\
& =\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2} \\
& =x_{1}^{2} y_{1}^{2}+2 x_{1} x_{2} y_{1} y_{2}+x_{2}^{2} y_{2}^{2}
\end{aligned}
\]

\[
\begin{aligned}
\phi(\mathrm{x}) \phi(y) & =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \cdot\left(y_{1}^{2}, \sqrt{2} y_{1} y_{2}, y_{2}^{2}\right) \\
& =x_{1}^{2} y_{1}^{2}+2 x_{1} x_{2} y_{1} y_{2}+x_{2}^{2} y_{2}^{2}
\end{aligned}
\]

Mapping to 3-dimension

\section*{Gaussian Kernel: derivation (inner product in the infinite z space)}
\[
\begin{aligned}
K\left(\mathrm{x}_{n}, \mathrm{x}_{m}\right) & =\exp \left(-\alpha\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{x}_{\mathrm{m}}\right\|^{2}\right) \\
& =\exp \left(-\alpha \mathrm{x}_{n}^{2}\right) \exp \left(-\alpha \mathrm{x}_{m}^{2}\right) \exp \left(2 \alpha \mathrm{x}_{n} \mathrm{x}_{m}\right) \\
& =\exp \left(-\alpha \mathrm{x}_{n}^{2}\right) \exp \left(-\alpha \mathrm{x}_{m}^{2}\right) \sum_{k=0}^{\infty} \frac{(2 \alpha)^{k}\left(\mathrm{x}_{\mathrm{n}}\right)^{k}\left(\mathrm{x}_{\mathrm{m}}\right)^{k}}{\mathrm{k}!} \\
& =\sum_{k=0}^{\text {Taylor series expansion of }} \begin{array}{l}
\frac{(2 \alpha)^{k}}{k!} \\
\exp (x)=\frac{x^{0}}{0!}+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
\end{array} \\
& =\phi\left(-\alpha \mathrm{x}_{n}^{2}\right)\left(\mathrm{x}_{\mathrm{n}}\right)^{k} \sqrt{\frac{(2 \alpha)^{k}}{k!}} \exp \left(-\alpha \mathrm{x}_{m}^{2}\right)\left(\mathrm{x}_{\mathrm{m}}\right)^{k}
\end{aligned}
\]
\[
\alpha=1
\]

\[
\alpha=100
\]

\section*{Backup Slides}

\section*{Variational inference: derivation}
\[
\begin{aligned}
& K L(q(Z) \| p(Z \mid X))=-\sum_{Z} q(Z) \log \frac{p(Z \mid X)}{q(Z)} \longrightarrow \text { Finding } q(Z) \text { which minimizes the Kullback divergence } \\
&=-\sum_{Z} q(Z) \log \frac{p(X, Z)}{q(Z) p(X)} \\
& K L=-\sum_{Z} q(Z) \log \frac{p(X, Z)}{q(Z)}+\sum_{Z} q(Z) \log p(X) \\
& K L+\sum_{Z} q(Z) \log \frac{p(X, Z)}{q(Z)}=\sum_{Z} q(Z) \log p(X)
\end{aligned}
\]

\section*{,}

\section*{Variational inference: derivation}
\(\square K L\) divergence and lower bound are a function of " \(q(Z)\) "
\(\square\) Minimizing KL divergence is equivalent to maximizing the lower bound (L).
\[
\begin{aligned}
& K L=-\sum_{Z} q(Z) \log \frac{p(Z \mid X)}{q(Z)} \quad \\
& L=\sum_{Z} q(Z) \log \frac{p(X, Z)}{q(Z)} \quad \text {. We do not have this conditional distribution } \\
&=\text { We do have the joint distribution }
\end{aligned}
\]
\[
\begin{aligned}
& K L+\sum_{Z} q(Z) \log \frac{p(X, Z)}{q(Z)}=\sum_{Z} q(Z) \log p(X) \quad \text { • } 4-8=-1 \\
& \text { - Always positive - Always Negative } \\
& \text { - Lower bound (L) } \\
& \text { - Always negative } \\
& \text { - It is a fixed value } \\
& \text { - } 1-2=-1 \\
& \text { - Always negative } \\
& \text { elis a fixed value }
\end{aligned}
\]
-

\section*{Variational inference: derivation}
\[
\begin{aligned}
\max & L=\sum_{Z} q(Z) \log \frac{p(X, Z)}{q(Z)} \\
& =\sum_{z_{1}} \sum_{z_{2}} q\left(z_{1}\right) q\left(z_{2}\right) \log \frac{p\left(x_{1}, x_{2}, z_{1}, z_{2}\right)}{q\left(z_{1}\right) q\left(z_{2}\right)} \quad \text { Assuming that } z_{1} \text { and } z_{2} \text { are independent } \\
& =\sum_{z_{1}} \sum_{z_{2}} q\left(z_{1}\right) q\left(z_{2}\right)\left[\log p\left(x_{1}, x_{2}, z_{1}, z_{2}\right)-\log q\left(z_{1}\right) q\left(z_{2}\right)\right] \\
& =\sum_{z_{1}} \sum_{z_{2}} q\left(z_{1}\right) q\left(z_{2}\right)\left[\log p\left(x_{1}, x_{2}, z_{1}, z_{2}\right)-\log q\left(z_{1}\right)-\log q\left(z_{2}\right)\right] \\
& =\sum_{z_{1}} \sum_{z_{2}} q\left(z_{1}\right) q\left(z_{2}\right) \log p\left(x_{1}, x_{2}, z_{1}, z_{2}\right)-\sum_{z_{1}} \sum_{z_{2}} q\left(z_{1}\right) q\left(z_{2}\right) \log q\left(z_{1}\right)-\sum_{z_{1}} \sum_{z_{2}} q\left(z_{1}\right) q\left(z_{2}\right) \log q\left(z_{2}\right)
\end{aligned}
\]

\section*{Variational inference: derivation}
\[
L=\sum_{z_{1}} \sum_{z_{2}} q\left(z_{1}\right) q\left(z_{2}\right) \log p\left(x_{1}, x_{2}, z_{1}, z_{2}\right)-\sum_{z_{1}} \sum_{z_{2}} q\left(z_{1}\right) q\left(z_{2}\right) \log q\left(z_{1}\right)-\sum_{z_{1}} \sum_{z_{2}} q\left(z_{1}\right) q\left(z_{2}\right) \log q\left(z_{2}\right)
\]

Assuming that \(\mathrm{q}\left(\mathrm{z}_{2}\right)\) is known, and so we just look for \(\mathrm{q}\left(\mathrm{z}_{1}\right)\)
\(=\sum_{z_{1}} \sum_{z_{2}} q\left(z_{1}\right) q\left(z_{2}\right) \log p\left(x_{1}, x_{2}, z_{1}, z_{2}\right)-\sum_{z_{1}} q\left(z_{1}\right) \log q\left(z_{1}\right) \sum_{z_{2}} q\left(z_{2}\right)-\sum_{z_{1}} q\left(z_{1}\right) \sum_{z_{2}} q\left(z_{2}\right) \log q\left(z_{2}\right)\)
\(=\sum_{z_{1}} q\left(z_{1}\right) \sum_{z_{2}} q\left(z_{2}\right) \log p\left(x_{1}, x_{2}, z_{1}, z_{2}\right)-\sum_{z_{1}} q\left(z_{1}\right) \log q\left(z_{1}\right) \sum_{z_{2}} q\left(z_{2}\right)-\sum_{z_{1}} q\left(z_{1}\right) \sum_{z_{2}} q\left(z_{2}\right) \log q\left(z_{2}\right)\)
\(=\sum_{z_{1}} q\left(z_{1}\right) E_{z_{2}}\left[\log p\left(x_{1}, x_{2}, z_{1}, z_{2}\right)\right]-\sum_{z_{1}} q\left(z_{1}\right) \log q\left(z_{1}\right)-K \sum_{z_{1}} q\left(z_{1}\right)\) It is one but we keep it for a while
\(=\sum_{z_{1}} q\left(z_{1}\right)\left[E_{z_{2}}\left[\log p\left(x_{1}, x_{2}, z_{1}, z_{2}\right)\right]-K\right]-\sum_{z_{1}} q\left(z_{1}\right) \log q\left(z_{1}\right)\)

\section*{Variational inference: derivation}
\[
\begin{aligned}
L= & \sum_{z_{1}} q\left(z_{1}\right)\left[E_{z_{2}}[\log p(X, Z)]-K_{1}-K_{2}\right]-\sum_{z_{1}} q\left(z_{1}\right) \log q\left(z_{1}\right) \\
& \quad \log f(X, Z)=E_{Z_{2}}[\log p(X, Z)]-K_{1} \\
& f(X, Z)=e^{E_{z_{2}}[\log p(X, Z)]-K_{1}}=e^{-K_{1}} e^{E_{z_{2}}[\log p(X, Z)]}=C e^{E_{E_{2}}[\log p(X, Z)]} \\
& \text { If we choose "C" carefully,f(X,Z) can be a probability distribution. } \quad \iint C e^{E_{z_{2}}[\log p(X, Z)]} d X d Z=1 \\
L= & \sum_{z_{1}} q\left(z_{1}\right)\left[\log f(X, Z)-K_{2}\right]-\sum_{z_{1}} q\left(z_{1}\right) \log q\left(z_{1}\right) \\
= & \sum_{z_{1}} q\left(z_{1}\right) \log f(X, Z)-\sum_{z_{1}} q\left(z_{1}\right) K_{2}-\sum_{z_{1}} q\left(z_{1}\right) \log q\left(z_{1}\right) \\
= & \sum_{z_{1}} q\left(z_{1}\right) \frac{\log f(X, Z)}{\log q\left(z_{1}\right)}-\sum_{z_{1}} q\left(z_{1}\right) K_{2}=\sum_{z_{1}} q\left(z_{1}\right) \frac{\log f(X, Z)}{\log q\left(z_{1}\right)}+C^{\prime}
\end{aligned}
\]

\section*{Variational inference: derivation}
\[
\begin{aligned}
& L=\sum_{z_{1}} q\left(z_{1}\right) \frac{\log f(X, Z)}{\log q\left(z_{1}\right)}-\sum_{z_{1}} q\left(z_{1}\right) K_{2}=\sum_{z_{1}} q\left(z_{1}\right) \frac{\log f(X, Z)}{\log q\left(z_{1}\right)}+C^{\prime} \\
& \log f(X, Z)=E_{z_{2}}[\log p(X, Z)]-K_{1} \quad \text { We defined it previously } \\
& f(X, Z)=e^{E_{z_{2}}[\log p(X, Z)]-K_{1}}=e^{-K_{1}} e^{E_{z_{2}}[\log p(X, Z)]}=C e^{E_{z_{2}}[\log p(X, Z)]}
\end{aligned}
\]

Lower bound \((L)\) is maximized when \(\log q(z 1)\) and \(\log p(X, Z)\) are equal because it is a negative \(K L\). Thus, ...
\[
\begin{aligned}
\log q\left(z_{1}\right) & =\log f(X, Z) \\
q\left(z_{1}\right) & =f(X, Z)=C_{1} e^{E_{z_{2}}[\log p(X, Z)]}=C_{1} e^{\sum_{2} q\left(z_{2}\right) \log p(X, Z)} \\
q\left(z_{2}\right) & =f(X, Z)=C_{2} e^{E_{z_{1}}[\log p(X, Z)]}=C_{2} e^{\sum_{z_{1}} q\left(z_{1}\right) \log p(X, Z)}
\end{aligned}
\]```

