Practical Machine Learning

Lecture 3
 K-means model and Gaussian Mixture Model (GMM)

Dr. Suyong Eum

A question from the last class

$\operatorname{MSE}(\mathrm{w})=\frac{1}{2} \sum_{n=1}^{N}\left(\mathrm{w}^{\mathrm{T}} \mathrm{x}_{n}-\mathrm{y}_{\mathrm{n}}\right)^{2}$
$\frac{\mathrm{d}}{\mathrm{dw}} \operatorname{MSE}(\mathrm{w})=\sum_{n=1}^{N}\left(\mathrm{w}^{\mathrm{T}} \mathrm{x}_{n}-\mathrm{y}_{n}\right) \cdot \mathrm{x}_{\mathrm{n}}^{\mathrm{T}}=0$

$$
\begin{aligned}
= & \sum_{n=1}^{N}\left(\mathrm{w}^{\mathrm{T}} \mathrm{X}_{\mathrm{n}}^{\mathrm{T}} \mathrm{X}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}}^{\mathrm{T}} \mathrm{y}_{\mathrm{n}}\right)=0 \\
& \mathrm{w}^{\mathrm{T}} \mathrm{X}_{\mathrm{n}}^{\mathrm{T}} \mathrm{X}_{\mathrm{n}}=\mathrm{X}_{\mathrm{n}}^{\mathrm{T}} \mathrm{y}_{\mathrm{n}}
\end{aligned}
$$

$$
\mathrm{w}^{\mathrm{T}}=\left(\mathrm{x}_{\mathrm{n}}^{\mathrm{T}} \mathrm{x}_{\mathrm{n}}\right)^{-1} \mathrm{x}_{\mathrm{n}}^{\mathrm{T}} \mathrm{y}_{\mathrm{n}}
$$

$(m \times 1) \quad[(m \times n)(n \times m)]^{-1}(m \times n)(n \times 1)$

$$
\begin{aligned}
& \operatorname{MSE}(\mathrm{w})=\frac{1}{2}(\mathrm{XW}-\mathrm{Y})^{\mathrm{T}}(\mathrm{XW}-\mathrm{Y}) \\
& (1 \times 1)=[(n \times m)(m \times 1)-(n \times 1)]^{-T}[(n \times m)(m \times 1)-(n \times 1)] \\
& =\frac{1}{2}\left((\mathrm{XW})^{\mathrm{T}}-\mathrm{Y}^{\mathrm{T}}\right)(\mathrm{XW}-\mathrm{Y}) \\
& =\frac{1}{2}\left(\mathrm{~W}^{\mathrm{T}} \mathrm{X}^{\mathrm{T}}-\mathrm{Y}^{\mathrm{T}}\right)(\mathrm{XW}-\mathrm{Y}) \\
& =\frac{1}{2}\left(W^{\mathrm{T}} \mathrm{X}^{\mathrm{T}} \mathrm{XW}-\mathrm{Y}^{\mathrm{T}} \mathrm{XW}-\mathrm{W}^{\mathrm{T}} \mathrm{X}^{\mathrm{T}} \mathrm{Y}+\mathrm{Y}^{\mathrm{T}} \mathrm{Y} \mathrm{Y}\right)=\left(\mathrm{W}^{\mathrm{T}} \mathrm{X}^{\mathrm{T}} \mathrm{Y}\right) \\
& Y^{T} X W=\left(W^{T} X^{T} Y\right)^{T} \\
& =\frac{1}{2}\left(\mathrm{~W}^{\mathrm{T}} \mathrm{X}^{\mathrm{T}} \mathrm{XW}-2 \mathrm{~W}^{\mathrm{T}} \mathrm{X}^{\mathrm{T}} \mathrm{Y}+\mathrm{Y}^{\mathrm{T}} \mathrm{Y}\right) \\
& \frac{d \mathrm{E}}{d \mathrm{~W}^{\mathrm{T}}}=\frac{1}{2}\left(2 \mathrm{X}^{\mathrm{T}} \mathrm{XW}-2 \mathrm{X}^{\mathrm{T}} \mathrm{Y}\right)=0 \\
& X^{T} X W=X^{T} Y \\
& W=\left(X^{T} X\right)^{-1} X^{T} Y \\
& (m \times 1) \quad[(m \times n)(n \times m)]^{-1}(m x n)(n \times 1)
\end{aligned}
$$

Where we are

Unsupervised learning: clustering

Clustering is the most fundamental learning mechanism.
\square What makes you think the below is a dog not a panda?

feature 1

Lecture Outline

- K-means model
\square Gaussian Mixture Model (GMM)
\square Expectation and Maximization (EM) for GMM
\square An example of EM operation
G Graphical representation of GMM
\qquad
\qquad

?

K-means model

K-means model

\square Problem of identifying clusters of data points by minimizing the function J
C Clustering the data points into K clusters: "assuming that K is known"

$$
J=\sum_{n=1}^{N} \sum_{k=1}^{K} r_{n k}\left\|x_{n}-\mu_{k}\right\|^{2}
$$

- N : the number of observed data points
- K: the number of clusters
- $x_{n}: n^{\text {th }}$ data point
- $\mu_{\mathrm{k}}: \mathrm{k}^{\text {th }}$ centroid corresponding to each cluster
- $\mathrm{r}_{\mathrm{nk}}:\{0,1\}$ showing whether a data point belongs to "k cluster" or not
- $\begin{aligned} & \mu_{1} \\ & \mu_{2} \\ & \mu_{3}\end{aligned}$

K-means model: which value the centroid should be?

\square To minimize the error function J, which value the centroid should be?
\square If J has $1 L$ norm, then?

$$
J=\sum_{n=1}^{N} \sum_{k=1}^{K} r_{n k}\left\|x_{n}-\mu_{k}\right\|^{2}
$$

$$
\frac{d J}{d \mu_{k}}=2 \sum_{n=1}^{N} r_{n k}\left(x_{n}-\mu_{k}\right)=0
$$

$$
\mu_{k}=\frac{\sum_{n} r_{n k} X_{n}}{\sum_{n} r_{n k}} \begin{aligned}
& \text { in cluster k } \\
& \text { in }
\end{aligned}
$$

μ_{k} : Mean of the data points x_{k} in cluster k

K-means clustering: how to optimize the equation?

$$
J=\sum_{n=1}^{N} \sum_{k=1}^{K} r_{n k}\left\|x_{n}-\mu_{k}\right\|^{2}
$$

Random choice

Expectation Step	
Expect which data points are close to each centroid I_{nk}	Maximization Step each cluster μ_{k}

Problems of K means: outlier or unevenly sized clusters

Undesirable clustering

Desirable clustering

Problems of K means: Initialization issue

\square Depending on the initialization, clustering results can be changed

Problems of K means: Non-spherical data issue

$\square \mathrm{K}$ means algorithm assumes that clustered data set has a shape of sphere.

Image segmentation and compression

Original image

Original: 24 bits per pixel
\square K clustering: Log2 K bits per pixel

An application of K-means algorithm

$K=10$

Gaussian Mixture Model (GMM)

Prerequisite items you need to know before GMM

- Likelihood function
\square Maximum likelihood estimation
\square Multivariate Gaussian distribution
元

Likelihood function

\square A likelihood function is a probability mass or density function having parameter(s).
\square We often take log both sides of the likelihood function and call it log-likelihood function.
\square Given a set of data, the parameter(s) of the probability model is estimated by maximizing the log-likelihood function, which is called a maximum likelihood estimation.

$$
\begin{aligned}
& N\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp ^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \\
& L\left(\mathrm{X} \mid \mu, \sigma^{2}\right)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp ^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}} \\
& \ln L\left(\mathrm{X} \mid \mu, \sigma^{2}\right)=\sum_{i=1}^{N} \ln \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp ^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Maximum likelihood estimation

- Maximum likelihood estimation is a procedure that finds the parameter(s) of the probability model by maximizing the (log)-likelihood function.
\square Some cases are easy to obtain an analytical solution. However, some cases are not.

$$
\ln L\left(\mathrm{X} \mid \mu, \sigma^{2}\right)=\sum_{i=1}^{N} \ln \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp ^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}
$$

$$
\arg \max _{\mu, \sigma^{2}} \ln L\left(\mathrm{X} \mid \mu, \sigma^{2}\right)
$$

$$
\begin{aligned}
\ln L\left(\mathrm{X} \mid \mu, \sigma^{2}\right) & =\sum_{i=1}^{N}\left[\ln \frac{1}{\sqrt{2 \pi \sigma^{2}}}-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
\frac{d}{d \mu} \ln L\left(\mathrm{X} \mid \mu, \sigma^{2}\right) & =\sum_{i=1}^{N}\left[\frac{\left(x_{i}-\mu\right)}{\sigma^{2}}\right]=0
\end{aligned}
$$

$$
\mu=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

Multivariate Gaussian distribution

A generalization of one-dimensional Gaussian distribution to higher dimensions
Two parameters: mean (μ) and covariance (Σ)
\square Notation: $\mathrm{N}(\mu, \Sigma)$

Gaussian Mixture Models (GMM)

\square A probability model that multivariate Gaussian distributions are mixed or linearly superposed.

$$
p(\mathrm{x})=\sum_{k=1}^{K} \pi_{k} N\left(\mathrm{x} \mid \mu_{k}, \Sigma_{k}\right)
$$

- π_{k} : mixing coefficient - probability that $\mathrm{k}^{\text {th }}$ multivariate Gaussian being selected
- μ_{k} : mean of $\mathrm{k}^{\text {th }}$ multivariate Gaussian
- Σ_{k} : covariance of $k^{\text {th }}$ multivariate Gaussian

Gaussian Mixture Models (GMM): a hidden or a latent variable

\square GMM has a hidden or a latent variable in the model.
\square It is denoted as " z ", which has K-dimensional binary random variable having 1-of-K representation.
\square The latent variable shows which cluster is active, which is governed by the mixing coefficient π_{k}

$$
\begin{array}{ll}
\mathrm{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{k}\right) & Z_{k} \in\{0,1\} \\
p\left(Z_{k}=1\right)=\pi_{k} & \quad \text { Probability that } \\
k^{\text {th }} \text { Gaussian is active. }
\end{array}
$$

$$
\mathrm{z}=\left(z_{1}, z_{2}, z_{3}\right)=(1,0,0)
$$

Gaussian Mixture Models (GMM): how to find all parameters of GMM?

\square We can find all parameters of GMM using maximum likelihood estimation

- Log-likelihood function of GMM is given as follows:

$$
\begin{aligned}
& L(\mathrm{X} \mid \pi, \mu, \Sigma)= \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_{k} N\left(\mathrm{x}_{n} \mid \mu_{k}, \sum_{k}\right) \\
&: \text { Likelihood function }: N \text { times of the GMM probabilities } \\
& \ln L(\mathrm{X} \mid \pi, \mu, \Sigma)= \sum_{n=1}^{N} \ln \left\{\sum_{k=1}^{K} \pi_{k} N\left(\mathrm{x}_{n} \mid \mu_{k}, \sum_{k}\right)\right\} \\
&: \log \text { likelihood function }
\end{aligned}
$$

$$
\arg \max _{\pi, \mu, \Sigma} \ln L(\mathrm{X} \mid \pi, \mu, \Sigma)
$$

\square There is not any analytical solution for this maximization problem. So,

- Neural network approach: using the negative log likelihood function as an error function
- Expectation Maximization (EM) approach

Expectation and Maximization (EM) for GMM

Gaussian Mixture Models (GMM): responsibility $\gamma\left(\mathrm{z}_{\mathrm{k}}\right)$

\square Different from K-means algorithm, GMM model tells the probabilities that a given data point belongs to individual classes.

- The probability is called "responsibility", which is denoted " $\gamma\left(\mathrm{z}_{\mathrm{k}}\right)$ "
- The probability is also called "posterior", which is denoted " $p\left(z_{k}=1 \mid x\right)$ "

$$
\gamma\left(z_{k}\right)=\frac{\pi_{k} N\left(\mathrm{x} \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{j=1}^{K} \pi_{j} N\left(\mathrm{x} \mid \mu_{j}, \Sigma_{j}\right)}
$$

$$
\begin{aligned}
& p(\mathrm{x}, \mathrm{z})=p(\mathrm{z}, \mathrm{x}) \\
& p(\mathrm{x}) p(\mathrm{z} \mid \mathrm{x})=p(\mathrm{z}) p(\mathrm{x} \mid \mathrm{z}) \\
& p(\mathrm{z} \mid \mathrm{x})=\frac{p(\mathrm{z}) p(\mathrm{x} \mid \mathrm{z})}{p(\mathrm{x})}=\frac{\pi_{k} N\left(\mathrm{x} \mid \mu_{\mathrm{k}}, \Sigma_{k}\right)}{\sum_{j=1}^{K} \pi_{j} N\left(\mathrm{x} \mid \mu_{j}, \Sigma_{j}\right)}
\end{aligned}
$$

$$
\gamma\left(z_{1}\right)=\frac{\pi_{1} N\left(\mathrm{x} \mid \mu_{1}, \Sigma_{1}\right)}{\pi_{1} N\left(\mathrm{x} \mid \mu_{1}, \Sigma_{1}\right)+\pi_{2} N\left(\mathrm{x} \mid \mu_{2}, \Sigma_{2}\right)}
$$

Gaussian Mixture Models (GMM): three parameters of GMM model

\square Well, this part normally involves slightly(?) heavy mathematical derivation.
An idea is that you can find the parameters 1) π_{k}, 2) μ_{k}, 3) Σ_{k} when responsibility $\gamma\left(\mathrm{z}_{\mathrm{k}}\right)$ is given.
\square And vice versa!
$\underset{\text { log likelihood function }}{\ln L(\mathrm{X} \mid \pi, \mu, \Sigma)}=\sum_{n=1}^{N} \ln \left\{\sum_{k=1}^{K} \pi_{k} N\left(\mathrm{x}_{n} \mid \mu_{k}, \Sigma_{k}\right)\right\}$

$$
N\left(\mathrm{x} \mid \mu_{k}, \Sigma_{k}\right)=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{\left|\Sigma_{k}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(\mathrm{x}-\mu_{k}\right) \Sigma_{k}^{-1}\left(\mathrm{x}-\mu_{k}\right)\right\}
$$

$$
\begin{array}{ll}
\text { (1) } \frac{d}{d \pi_{k}} \ln L(\mathrm{X} \mid \pi, \mu, \Sigma)=0 \xrightarrow{\text { M }} \xrightarrow{\text { Magrange method }} \pi_{k}=\frac{N_{k}}{N} \\
\text { (2) } \frac{d}{d \mu_{k}} \ln L(\mathrm{X} \mid \pi, \mu, \Sigma)=0 \xrightarrow{\text { M of data }} \begin{array}{l}
\text { in a class k }
\end{array} \mu_{k}=\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma\left(z_{n k}\right) \mathrm{X}_{\mathrm{n}} & N_{k}=\sum_{n=1}^{N} \gamma\left(z_{n k}\right)
\end{array}
$$

$$
\text { (3) } \frac{d}{d \Sigma_{k}} \ln L(\mathrm{X} \mid \pi, \mu, \Sigma)=0 \xrightarrow{\begin{array}{c}
\text { Covariance of } \\
\text { data in a class } \mathrm{k}
\end{array}} \Sigma_{k}=\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma\left(\mathrm{z}_{n k}\right)\left(\mathrm{x}_{n}-\mu_{k}\right)\left(\mathrm{x}_{n}-\mu_{k}\right)^{T}
$$

Gaussian Mixture Models (GMM): E-step

\square Three parameters of GMM model is from M-step (or randomly initialized in the first iteration).

- 1) π_{k}, 2) $\left.\mu_{k}, 3\right) \sum_{k}$
- Expect the responsibility " $\gamma\left(\mathrm{z}_{\mathrm{k}}\right)$ "

$$
\gamma\left(z_{k}\right)=\frac{\pi_{k} N\left(\mathrm{x} \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{j=1}^{K} \pi_{j} N\left(\mathrm{x} \mid \mu_{j}, \Sigma_{j}\right)}
$$

$$
\begin{aligned}
& \gamma\left(z_{1}\right)=\frac{\pi_{1} N\left(\mathrm{x} \mid \mu_{1}, \Sigma_{1}\right)}{\pi_{1} N\left(\mathrm{x} \mid \mu_{1}, \Sigma_{1}\right)+\pi_{2} N\left(\mathrm{x} \mid \mu_{2}, \Sigma_{2}\right)} \\
& \gamma\left(\mathrm{z}_{2}\right)=\frac{\pi_{2} N\left(\mathrm{x} \mid \mu_{2}, \Sigma_{2}\right)}{\pi_{1} N\left(\mathrm{x} \mid \mu_{1}, \Sigma_{1}\right)+\pi_{2} N\left(\mathrm{x} \mid \mu_{2}, \Sigma_{2}\right)}
\end{aligned}
$$

Gaussian Mixture Models (GMM): M-step

\square The responsibility " $\gamma\left(\mathrm{z}_{\mathrm{k}}\right)$ " is from E-step.
\square Three parameters of GMM model is calculated using the equations below:
(1) $\pi_{k}=\frac{N_{k}}{N}$
(2) $\mu_{k}=\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma\left(z_{n k}\right) \mathrm{x}_{\mathrm{n}}$

$$
N_{k}=\sum_{n=1}^{N} \gamma\left(z_{n k}\right)
$$

(3) $\Sigma_{k}=\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma\left(z_{n k}\right)\left(\mathrm{x}_{n}-\mu_{k}\right)\left(\mathrm{x}_{n}-\mu_{k}\right)^{T}$

	\mathbf{x}_{1}	\mathbf{x}_{2}	\ldots	\mathbf{x}_{n}
Cluster (k=1)	$\gamma\left(\mathrm{z}_{11}\right)$	$\gamma\left(\mathrm{z}_{21}\right)$	\ldots	$\gamma\left(\mathrm{z}_{\mathrm{n} 1}\right)$
Cluster (k=2)	$\gamma\left(\mathrm{z}_{12}\right)$	$\gamma\left(\mathrm{z}_{22}\right)$	\ldots	$\gamma\left(\mathrm{z}_{\mathrm{n} 2}\right)$
N_{1}	N_{2}			

Gaussian Mixture Models (GMM): operation

1) π_{k},
2) μ_{k},
3) Σ_{k}

Initial random setup

Gaussian Mixture Models (GMM) vs K-means

K-means	GMM
[Hard clustering: \{Yes or No \}	Soft clustering: \{Probability\}
- Centroid (μ_{k})	Mean and Covariance ($\mu_{\mathrm{k}}, \Sigma_{\mathrm{k}}$)
- r_{nk} : $\{0,1\}$	- Mixing coefficient (π_{k}): probability
\square Reducing the distance	- Maximizing log likelihood function
\square Simple and Fast	Complex and Slow

\square Therefore, common to run the K-means algorithm in order to find a suitable initialization for a Gaussian mixture model that is subsequently adapted using EM.
\square "K" needs to be decided.

An example of EM operation

EM algorithm: an example - smoking and cancer

\square Your task is to find out a group of people over 70 who has high risks of cancer.
\square Your initial belief is that

- 70% of cancer patients are a smoker.
- 30\% of non-cancer patients are a smoker.
\square Then, a survey is carried out to five groups of people as follows:

	smoker	Non-smoker
Group1	6	4
Group2	7	3
Group3	5	5
Group4	9	1
Group5	8	2

EM algorithm: an example: E-step

- Initially, the model parameter is guessed (your belief) as follows:
- Cancer patient: p(smoker) $=0.7$
- Non-cancer patient: p(smoker) $=0.3$
\square Calculate the probability from each class (cancer and non-cancer)
- The class is modelled using Binomial distribution.

	smoker	Non-smoker
Group1	6	4
Group2	7	3
Group3	5	5
Group4	9	1
Group5	8	2
	35	15

\square Expect the posterior: p (cancer|smoker)

- Responsibility of each class based on the given model parameter and data

Posterior showing how much
Probability that $\{6,7,5,9,8\}$
out of 10 are a smoker when they are cancer patients

Probability that $\{6,7,5,9,8\}$
out of 10 are a smoker when they are non-cancer patients
responsible each class has for data set
$\frac{\text { cancer }}{\text { cancer }+ \text { non_cancer }} \quad \frac{\text { non_cancer }}{\text { cancer }+ \text { non_cancer }}$

	Cancer	Non-cancer	Cancer	Non-cancer
G1	$\mathrm{C}(10,6)(0.7)^{6}(1-0.7)^{4}=0.200$	$\mathrm{C}(10,6)(0.3)^{6}(1-0.3)^{4}=0.037$	0.844	0.156
G2	$\mathrm{C}(10,7)(0.7)^{7}(1-0.7)^{3}=0.267$	$\mathrm{C}(10,7)(0.3)^{7}(1-0.3)^{3}=0.009$	0.967	0.033
G3	$\mathrm{C}(10,5)(0.7)^{5}(1-0.7)^{5}=0.103$	$\mathrm{C}(10,5)(0.3)^{5}(1-0.3)^{5}=0.103$	0.5	0.5
G4	$\mathrm{C}(10,9)(0.7)^{9}(1-0.7)^{1}=0.121$	$\mathrm{C}(10,9)(0.3)^{9}(1-0.3)^{1}=0.00013$	0.998	0.002
G5	$\mathrm{C}(10,8)(0.7)^{8}(1-0.7)^{2}=0.233$	$\mathrm{C}(10,8)(0.3)^{8}(1-0.3)^{2}=0.00145$	0.993	0.007

EM algorithm: an example: M-step

\square Posteriors: $\mathrm{p}($ cancer \mid smoker $)$ and $\mathrm{p}($ non-cancer \mid smoker $)$ are given from E-Step
\square The parameter of the Binomial distribution is calculated to maximize its likelihood function.

	smoker	Non-smoker
Group1	6	4
Group2	7	3
Group3	5	5
Group4	9	1
Group5	8	2
	35	15

	Cancer		Non-cancer	
	Smoker	Non-smoker	Smoker	Non-smoker
G1	$6 \times 0.844=5.069$	$4 \times 0.844=3.379$	$6 \times 0.156=0.931$	$4 \times 0.156=0.621$
G2	$7 \times 0.967=6.772$	$3 \times 0.967=2.902$	$7 \times 0.033=0.228$	$3 \times 0.033=0.098$
G3	$5 \times 0.5=2.500$	$5 \times 0.5=2.500$	$5 \times 0.5=2.500$	$5 \times 0.5=2.500$
G4	$9 \times 0.998=8.990$	$1 \times 0.998=0.999$	$9 \times 0.002=0.010$	$1 \times 0.002=0.001$
G5	$8 \times 0.993=7.951$	$2 \times 0.993=1.988$	$8 \times 0.007=0.049$	$2 \times 0.007=0.012$
	31.28	11.77	3.72	3.23
	$p($ smoker $)=31.28 /(31.28+11.77)=0.73$		$\mathrm{p}(\mathrm{smoker})=3.72 /(3.72+3.23)=0.54$	

\square Comparing to the previous values: Cancer patient, $\mathrm{p}(\mathrm{smoker})=0.7$, Non-cancer patient, $\mathrm{p}(\mathrm{smoker})=0.3$
\square If the values do not change much, go to E-step. Otherwise, stop.

Graphical representation of a GMM

Graphical representation of a GMM

Probability showing the weight of each multivariate Gaussian model

- Mean of each multivariate Gaussian model

K-dimensional binary random variable having 1 -of-K representation

- Basically, tell you which multivariate Gaussian model is active.
- It is governed by π

\square Select one multivariate Gaussian distribution using π
\square From the selected multivariate Gaussian distribution with μ

$$
p(\mathrm{x})=\sum_{k=1}^{K} \pi_{k} N\left(\mathrm{x} \mid \mu_{k}, \sum_{k}\right)
$$

