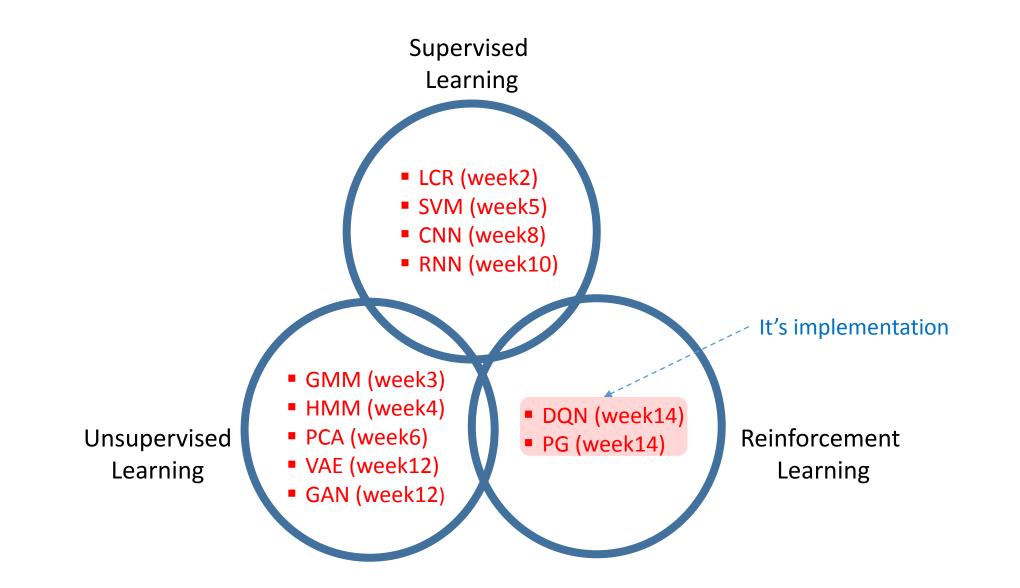


Practical Machine Learning

Lecture 15 Tensorflow – DQN/PG/AC implementation

Dr. Suyong Eum



You are going to learn

- □ What OpenAI and Gym are,
- □ Implementations of
 - Deep Q-Network (DQN) 2015
 - Policy Gradient (PG)
 - Actor Critic (AC)

OpenAl Gym

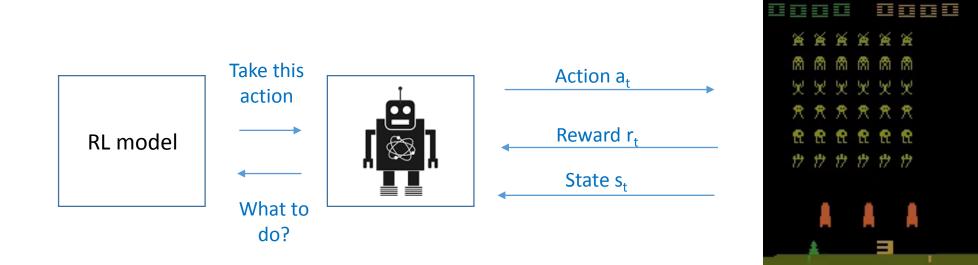
OpenAl :

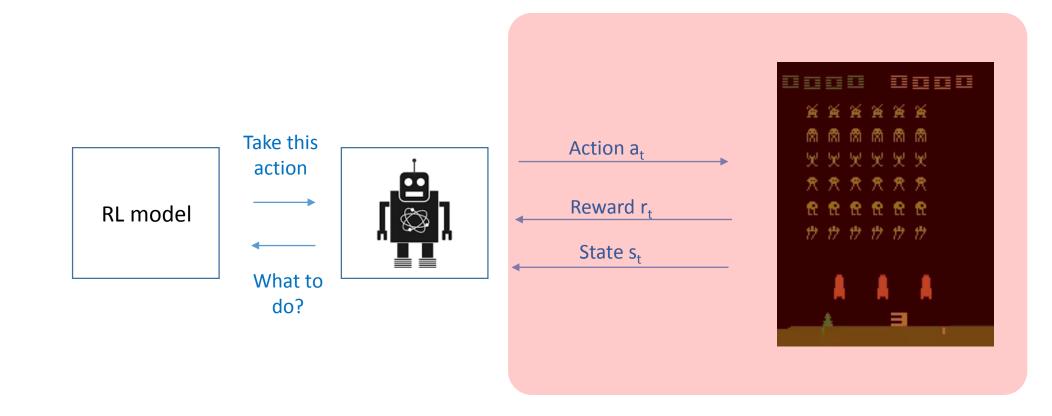
- A non-profit artificial intelligence (AI) research company that aims to promote and develop friendly AI in such a way to benefit humanity as a whole.
- In October 2015, Elon Musk et al founded the organization.
- On April 2016, OpenAI released a public beta of "OpenAI Gym", its platform for reinforcement learning research.

🖵 OpenAl Gym

- A toolkit for developing and comparing reinforcement learning algorithms
- https://github.com/openai/gym
- https://gym.openai.com/

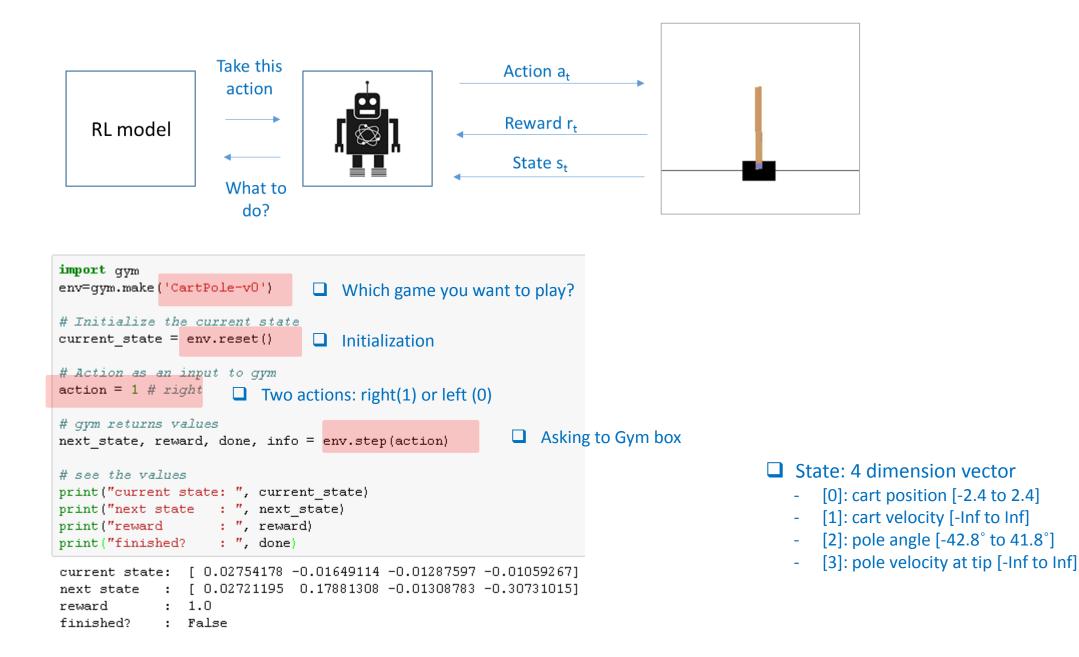
Gym is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from walking to playing games like Pong or Pinball.





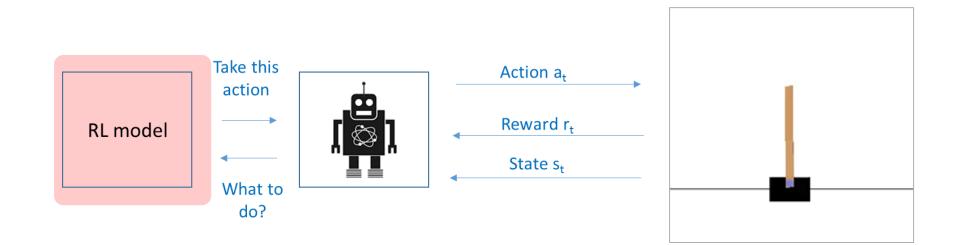
Gym framework

OpenAl Gym framework: CartPole game



7

Reinforcement Learning (RL) algorithm



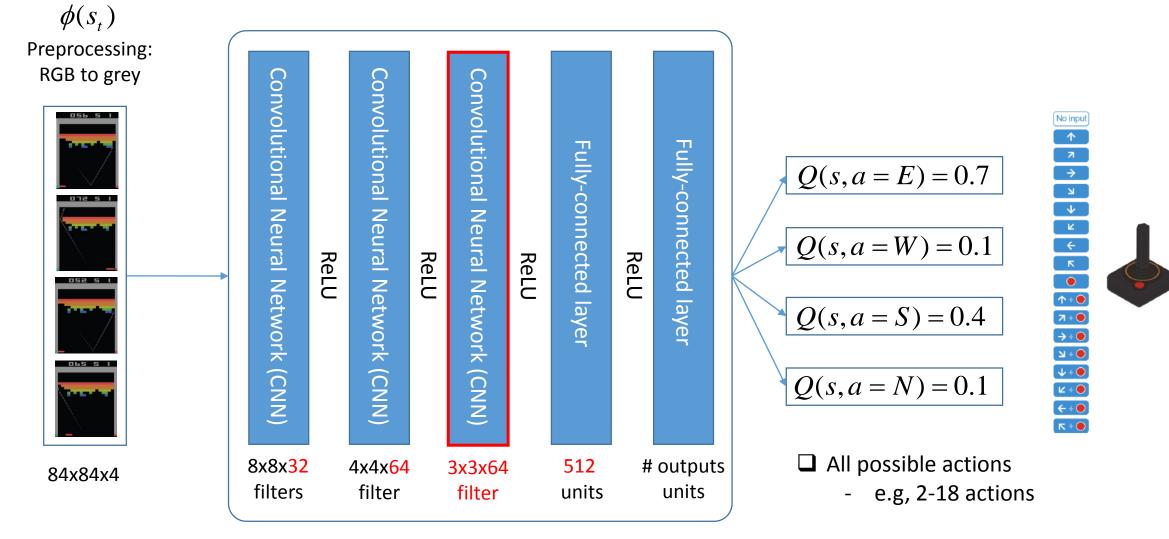
- 1) Deep Q-Networks (DQN)
- 2) Policy Gradient (PG)
- 3) Actor Critic (AC)

DQN implementation

https://github.com/hunkim/DeepLearningZeroToAll

- 07_3_dqn_2015_cartpole.py

DQN architecture (2015)



Algorithm 1: deep Q-learning with experience replay. Initialize replay memory *D* to capacity *N* ------ Data pool size and initialization For episode = 1, M do Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$ ------ Preprocessing, e.g., RGB to gray For t = 1,T do With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$ Action selection using E-greedy: off-policy Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in *D* Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from *D* ------ Experience replay $\operatorname{Set} y_{j} = \begin{cases} r_{j} & \text{if episode terminates at step } j+1 \\ r_{j} + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^{-}) & \text{otherwise} & \text{Target future reward is obtained from NN}(\theta^{-}) \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the -----> Update NN (θ) without changing NN (θ) network parameters θ Every C steps reset $\hat{Q} = Q$ ------ Replace NN (θ) with NN (θ) every C steps **End For End For**

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory *D* to capacity *N*

Initialize action-value function Q with random weights θ

Initialize target acti

For episode = 1, M Data pool size and initialization

- Initialize sequend deque(): list-like container with fast operation
- For t = 1,T do With probab

otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in DSample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from DSet $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ Every *C* steps reset $\hat{Q} = Q$ End For

End For

store the previous observations in replay memory
replay_buffer = deque(maxlen=REPLAY_MEMORY)

last_100 game_reward = deque(maxlen=100)

with tf.Session() as sess:

mainDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name="main")
targetDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name="target")
sess.run(tf.global_variables_initializer())

initial copy q_net -> target_net

sess.run(copy_ops)

```
for episode in range(MAX_EPISODES):
    e = 1. / ((episode / 10) + 1)
    done = False
    step_count = 0
    state = env.reset()
```

while not done:

if np.random.rand() < e: action = env.action space.sample()

else:

Choose an action by greedily from the Q-network
action = np.argmax(mainDQN.predict(state))

Get new state and reward from environment next_state, reward, done, _ = env.step(action)

```
if done: # Penalty
    reward = -1
```

Save the experience to our buffer replay_buffer.append((state, action, reward, next_state, done))

```
if len(replay_buffer) > BATCH_SIZE:
    minibatch = random.sample(replay_buffer, BATCH_SIZE)
    loss, _ = replay_train(mainDQN, targetDQN, minibatch)
```

```
if step_count % TARGET_UPDATE_FREQUENCY == 0:
    sess.run(copy_ops)
```

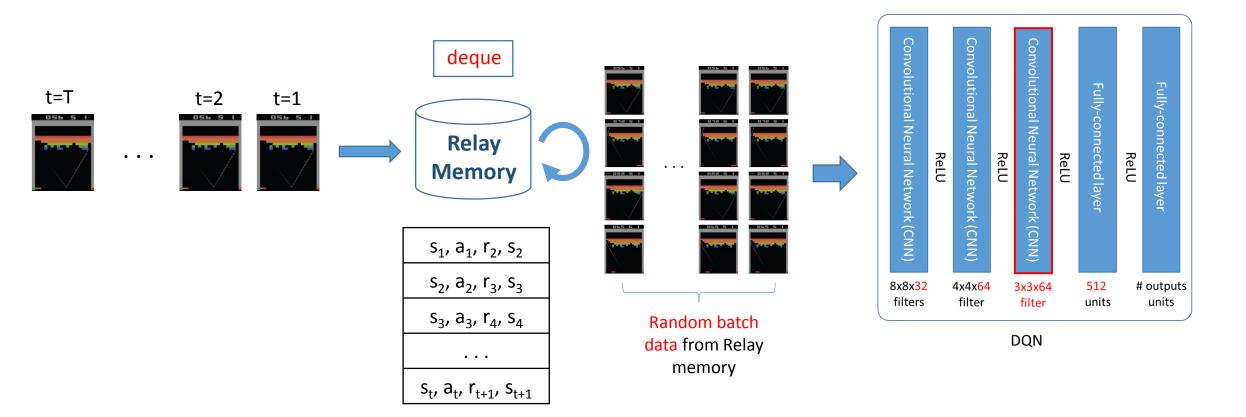
```
state = next_state
step_count += 1
```

print("Episode: {} steps: {}".format(episode, step_count))

DQN Code: experience replay

Consecutive data frames are highly correlated

□ Experience replay aims to remove the correlation between data samples



Algorithm 1: deep Q-learning with experience replay. Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$ For episode = 1, M do Initialize sequence $s_1 = \{x_1\}$ and Main Q-Net and target \hat{Q} -Net creation For t = 1,T do • Copy from main Q-Net to target \hat{Q} -Net With probability ε select a rational select a otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from *D* Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ Every C steps reset $\hat{Q} = Q$ **End For End For**

store the previous observations in replay memory
replay_buffer = deque(maxlen=REPLAY_MEMORY)

last_100_game_reward = deque(maxlen=100)

with tf.Session() as sess:

```
mainDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name="main")
targetDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name="target")
sess.run(tf.global_variables_initializer())
```

```
# initial copy q_net -> target_net
```

```
for episode in range(MAX_EPISODES):
    e = 1. / ((episode / 10) + 1)
    done = False
    step_count = 0
    state = env.reset()
```

while not done:

if np.random.rand() < e: action = env.action space.sample()

```
else:
```

Choose an action by greedily from the Q-network
action = np.argmax(mainDQN.predict(state))

Get new state and reward from environment next_state, reward, done, _ = env.step(action)

```
if done: # Penalty
    reward = -1
```

Save the experience to our buffer replay_buffer.append((state, action, reward, next_state, done))

```
if len(replay_buffer) > BATCH_SIZE:
    minibatch = random.sample(replay_buffer, BATCH_SIZE)
    loss, _ = replay_train(mainDQN, targetDQN, minibatch)
```

```
if step_count % TARGET_UPDATE_FREQUENCY == 0:
    sess.run(copy_ops)
```

```
state = next_state
step_count += 1
```

print("Episode: {} steps: {}".format(episode, step_count))

DQN Code: fixed Q-target



Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function Q with weights $\theta^- = \theta$ For episode = 1, M do Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$ For t = 1,T do With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and prepresent the set of the s Sample random minibatch of transitions $(\varphi_j, a_j, r_j, \varphi_{j+1})$ from D Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ Every C steps reset $\hat{Q} = Q$ **End For End For**

store the previous observations in replay memory
replay_buffer = deque(maxlen=REPLAY_MEMORY)

last_100_game_reward = deque(maxlen=100)

with tf.Session() as sess:

mainDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name="main")
targetDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name="target")
sess.run(tf.global_variables_initializer())

initial copy q_net -> target_net

for episode in range(MAX EPISODES):

```
e = 1. / ((episode / 10) + 1)
done = False
step_count = 0
state = env.reset()
```

while not done:

if np.random.rand() < e: action = env.action_space.sample() else: # Choose an action by greedily from the Q-network action = np.argmax(mainDQN.predict(state))

Get new state and reward from environment next_state, reward, done, _ = env.step(action)

```
if done: # Penalty
    reward = -1
```

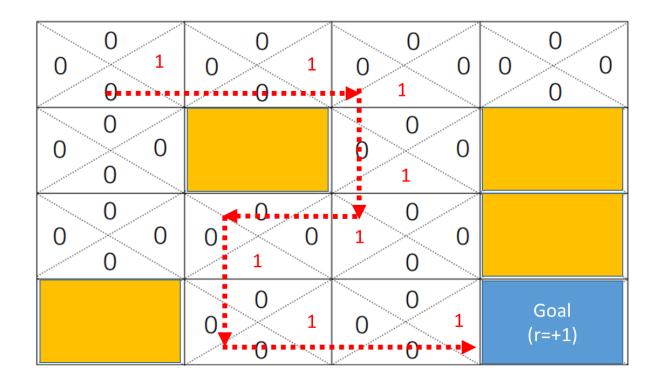
Save the experience to our buffer replay_buffer.append((state, action, reward, next_state, done))

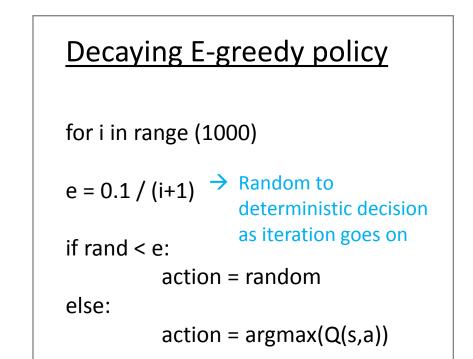
if len(replay_buffer) > BATCH_SIZE: minibatch = random.sample(replay_buffer, BATCH_SIZE) loss, _ = replay_train(mainDQN, targetDQN, minibatch)

```
if step_count % TARGET_UPDATE_FREQUENCY == 0:
    sess.run(copy_ops)
```

```
state = next_state
step count += 1
```

print("Episode: {} steps: {}".format(episode, step_count))





Algorithm 1: deep Q-learning with experience replay.

```
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function Q with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1,T do
       With probability \varepsilon select a random action a_t
       otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
       Execute action a_t in emulator and observe reward r_t and image x_{t+1}
       Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
       Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
       Sample random minibatch of transitions (\phi_j, a_j)
                                                                         OpenAI GYM emulator
                                                       if episote erminates at step ) - 1
      Set y_j = \begin{cases} r_j \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) \end{cases}
                                                                       otherwise
       Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
       network parameters \theta
       Every C steps reset \hat{Q} = Q
   End For
End For
```

store the previous observations in replay memory
replay_buffer = deque(maxlen=REPLAY_MEMORY)

last_100_game_reward = deque(maxlen=100)

with tf.Session() as sess:

mainDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name="main")
targetDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name="target")
sess.run(tf.global_variables_initializer())

initial copy q_net -> target_net

for episode in range(MAX_EPISODES): e = 1. / ((episode / 10) + 1) done = False step_count = 0 state = env.reset()

while not done:

if np.random.rand() < e:</pre>

```
action = env.action_space.sample()
```

else:

Choose an action by greedily from the Q-network
action = np.argmax(mainDQN.predict(state))

Get new state and reward from environment next_state, reward, done, _ = env.step(action)

```
if done: # Penalty
    reward = -1
```

Save the experience to our buffer
replay_buffer.append((state, action, reward, next_state, done))

if len(replay_buffer) > BATCH_SIZE: minibatch = random.sample(replay_buffer, BATCH_SIZE) loss, _ = replay_train(mainDQN, targetDQN, minibatch)

```
if step_count % TARGET_UPDATE_FREQUENCY == 0:
    sess.run(copy_ops)
```

```
state = next_state
step_count += 1
```

print("Episode: {} steps: {}".format(episode, step_count))

DQN Code: basic information

□ Action:

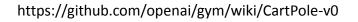
- 0: left
- 1: right

□ State: 4 dimension vector

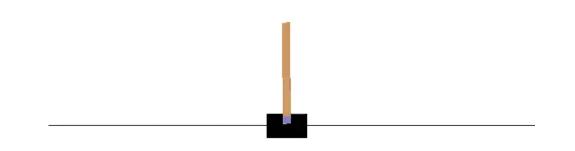
- [0]: cart position [-2.4 to 2.4]
- [1]: cart velocity [-Inf to Inf]
- [2]: pole angle [-42.8 $^{\circ}$ to 41.8 $^{\circ}$]
- [3]: pole velocity at tip [-Inf to Inf]

Initial state

- Random values between ±0.05
- Reward:
 - +1 each unit time if it is not fallen
- Episode Termination
 - Pole Angle is more than $\pm 12^{\circ}$
 - Cart Position is more than ± 2.4
 - Episode length is greater than 200 (unit time)
- □ Training Termination
 - Average reward is greater than or equal to 195 over 100 consecutive trials







10 = {ndarray} [-0.1062376 -0.37924474 0.19689548 0.9208114]

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function Q with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1,T do
       With probability \varepsilon select a random action a_t
       otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
       Execute action a_t in emulator and observe reward r_t and image x_{t+1}
       Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
       Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
       Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from D
                                                        if episode terminates at step j+1
       Set y_j = \begin{cases} r_j \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) \end{cases}
                                                                        otherwise
       Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
```

- network parameters θ
- Experience replay implementation
- Wait until collecting enough number of input data (batch_size)
- Then, randomly sample "batch_size" number of inputs from the buffer

store the previous observations in replay memory
replay_buffer = deque(maxlen=REPLAY_MEMORY)

last_100_game_reward = deque(maxlen=100)

```
with tf.Session() as sess:
    mainDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name="main")
    targetDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name="target")
    sess.run(tf.global_variables_initializer())
```

```
# initial copy q_net -> target_net
```

for episode in range(MAX_EPISODES):
 e = 1. / ((episode / 10) + 1)
 done = False
 step_count = 0
 state = env.reset()

while not done:

if np.random.rand() < e: action = env.action space.sample()

```
else:
```

Choose an action by greedily from the Q-network
action = np.argmax(mainDQN.predict(state))

Get new state and reward from environment next_state, reward, done, _ = env.step(action)

```
if done: # Penalty
    reward = -1
```

```
# Save the experience to our buffer
replay_buffer.append((state, action, reward, next_state, done))
if len(replay_buffer) > BATCH_SIZE:
    minibatch = random.sample(replay_buffer, BATCH_SIZE)
    loss, _ = replay_train(mainDQN, targetDQN, minibatch)
```

```
if step_count % TARGET_UPDATE_FREQUENCY == 0:
    sess.run(copy_ops)
```

```
state = next_state
step_count += 1
```

print("Episode: {} steps: {}".format(episode, step_count))

E

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function Q with weights \theta^- = \theta
For episode = 1, M do
  Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
  For t = 1,T do
       With probability \varepsilon select a random action a_t
       otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
       Execute action a_t in emulator and observe reward r_t and image x_{t+1}
       Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
       Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
       Sample random minibatch of transitions (\phi_{j}, a_{j}, r_{j}, \phi_{j+1}) from D
                                                     if episode terminates at step j+1
                  r_{j} + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^{-})
       Set y_j = \langle
                                                                     otherwise
       Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
       network parameters \theta
       Every C steps reset \hat{Q} = Q
  End For
                                                      Training the main Q-Net
End For
                                                       given minibatch input
```

store the previous observations in replay memory
replay_buffer = deque(maxlen=REPLAY_MEMORY)

last_100_game_reward = deque(maxlen=100)

with tf.Session() as sess: mainDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name="main") targetDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name="target") sess.run(tf.global_variables_initializer())

```
# initial copy q_net -> target_net
```

```
for episode in range(MAX_EPISODES):
    e = 1. / ((episode / 10) + 1)
    done = False
    step_count = 0
    state = env.reset()
```

while not done:

if np.random.rand() < e: action = env.action_space.sample() else: # Choose an action by greedily from the Q-network action = np.argmax(mainDQN.predict(state))

```
# Get new state and reward from environment
next_state, reward, done, _ = env.step(action)
```

```
if done: # Penalty
    reward = -1
```

```
# Save the experience to our buffer
replay_buffer.append((state, action, reward, next_state, done))
```

```
if len(replay_buffer) > BATCH_SIZE:
    minibatch = random.sample(replay_buffer, BATCH_SIZE)
    loss, _ = replay_train(mainDQN, targetDQN, minibatch)
```

```
if step_count % TARGET_UPDATE_FREQUENCY == 0:
    sess.run(copy_ops)
```

```
state = next_state
step_count += 1
```

print("Episode: {} steps: {}".format(episode, step_count))

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function \hat{O} with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1,T do
       With probability \varepsilon select a random action a_t
       otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
       Execute action a_t in emulator and observe reward r_t and image x_{t+1}
       Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
       Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
       Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from D
      Set y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}
       Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
       network parameters \theta
       Every C steps reset Q = Q
   End For
                                                        Training the main Q-Net
End For
                                                         given minibatch input
```

store the previous observations in replay memory replay buffer = deque(maxlen=REPLAY MEMORY)

last 100 game reward = deque(maxlen=100)

with tf.Session() as sess:

```
def replay train(mainDQN: dqn.DQN, targetDQN: dqn.DQN, train batch: list) -> float:
      "Trains `mainDQN` with target Q values given by `targetDQN
```

Args:

mainDQN (dgn.DQN): Main DQN that will be trained targetDQN (dqn.DQN): Target DQN that will predict Q target train batch (list): Minibatch of replay memory Each element is (s, a, r, s', done) [(state, action, reward, next state, done), ...]

Returns:

float: After updating `mainDQN`, it returns a `loss`

```
states = np.vstack([x[0] for x in train batch])
actions = np.array([x[1] for x in train batch])
rewards = np.array([x[2] \text{ for } x \text{ in } train batch])
next states = np.vstack([x[3] for x in train_batch])
done = np.array([x[4] for x in train batch])
```

reward = -1

X = states

Q target = rewards + DISCOUNT RATE * np.max(targetDQN.predict(next states), axis=1) * ~done

y = mainDQN.predict(states) y[np.arange(len(X)), actions] = Q target

Train our network using target and predicted Q values on each episode return mainDQN.update(X, y)

***** # Save the experience to our buffer buffer append((state, action, replay buffer.append((state, action, reward, next state, done))

> if len(replay buffer) > BATCH_SIZE: minibatch = random.sample(replay buffer, BATCH SIZE) loss, = replay train(mainDQN, targetDQN, minibatch)

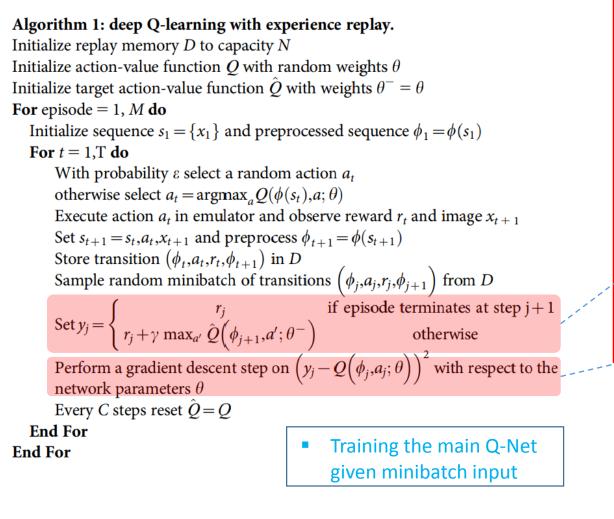
```
if step count % TARGET UPDATE FREQUENCY == 0:
    sess.run(copy ops)
```

```
state = next state
step count += 1
```

print("Episode: {} steps: {}".format(episode, step count))

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function \hat{O} with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1,T do
       With probability \varepsilon select a random action a_t
       otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
       Execute action a_t in emulator and observe reward r_t and image x_{t+1}
       Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
       Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
       Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from D
      Set y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}
       Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
       network parameters \theta
       Every C steps reset Q = Q
   End For
                                                        Training the main Q-Net
End For
                                                         given minibatch input
```

store the previous observations in replay memory replay buffer = deque(maxlen=REPLAY MEMORY) last 100 game reward = deque(maxlen=100) with tf.Session() as sess: def replay train(mainDQN: dqn.DQN, targetDQN: dqn.DQN, train batch: list) -> float: "Trains `mainDQN` with target Q values given by `targetDQN Args: mainDQN (dqn.DQN): Main DQN that will be trained targetDQN (dqn.DQN): Target DQN that will predict Q target train batch (list): Minibatch of replay memory Each element is (s, a, r, s', done) [(state, action, reward, next state, done), ...] Returns: float: After updating `mainDQN`, it returns a `loss` states = np.vstack([x[0] for x in train batch]) actions = np.array([x[1] for x in train batch]) rewards = np.array([x[2] for x in train batch]) next states = np.vstack([x[3] for x in train batch]) done = np.array([x[4] for x in train batch]) X = states Q target = rewards + DISCOUNT RATE * np.max(targetDQN.predict(next states), axis=1) * ~done y = mainDON.predict(states) y[np.arange(len(X)), actions] = Q target# Train our network using target and predicted Q values on each episode return mainDQN.update(X, y) reward = -1 # Save the experience to our buffer replay buffer.append((state, action, reward, next state, done)) if len(replay buffer) > BATCH_SIZE: minibatch = random.sample(replay buffer, BATCH SIZE) loss, = replay train(mainDQN, targetDQN, minibatch) if step count % TARGET UPDATE FREQUENCY == 0: sess.run(copy ops) state = next state step count += 1



store the previous observations in replay memory replay buffer = deque(maxlen=REPLAY MEMORY) last 100 game reward = deque(maxlen=100) with tf.Session() as sess: def replay train(mainDQN: dqn.DQN, targetDQN: dqn.DQN, train batch: list) -> float: "Trains `mainDQN` with target Q values given by `targetDQN Args: mainDQN (dgn.DQN): Main DQN that will be trained targetDQN (dqn.DQN): Target DQN that will predict Q target train batch (list): Minibatch of replay memory Each element is (s, a, r, s', done) [(state, action, reward, next state, done), ...] Returns: float: After updating `mainDQN`, it returns a `loss` states = np.vstack([x[0] for x in train batch]) actions = np.array([x[1] for x in train batch]) rewards = np.array([x[2] for x in train batch]) next states = np.vstack([x[3] for x in train_batch]) done = np.array([x[4] for x in train batch]) X = states Q target = rewards + DISCOUNT RATE * np.max(targetDQN.predict(next states), axis=1) * ~done y = mainDON.predict(states) y[np.arange(len(X)), actions] = Q target# Train our network using target and predicted Q values on each episode return mainDQN.update(X, y) reward = -1

Save the experience to our buffer replay_buffer.append((state, action, reward, next state, done)) if len(replay_buffer) > BATCH_SIZE: minibatch = random.sample(replay_buffer, BATCH_SIZE) loss, _ = replay_train(mainDQN, targetDQN, minibatch) if step_count % TARGET_UPDATE_FREQUENCY == 0: sess.run(copy_ops) state = next_state step_count += 1

print("Episode: {} steps: {}".format(episode, step_count))

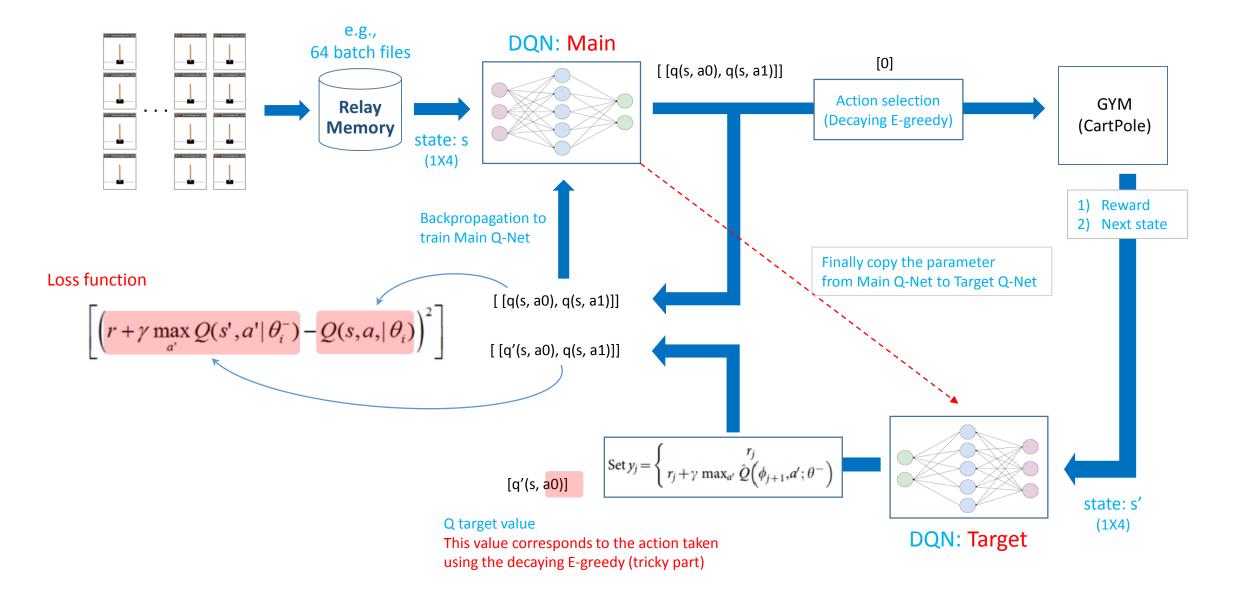
```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function Q with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1,T do
       With probability \varepsilon select a random action a_t
       otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
       Execute action a_t in emulator and observe reward r_t and image x_{t+1}
       Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
       Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
       Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from D
      Set y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}
       Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
       network parameters \theta
       Every C steps reset Q = Q
   End For
End For
                                               • Copy NN (\theta) with NN (\theta) every C steps
```

store the previous observations in replay memory replay buffer = deque(maxlen=REPLAY MEMORY) last 100 game reward = deque(maxlen=100) with tf.Session() as sess: mainDQN = dqn.DQN(sess, INPUT SIZE, OUTPUT SIZE, name="main") targetDQN = dqn.DQN(sess, INPUT SIZE, OUTPUT SIZE, name="target") sess.run(tf.global variables initializer()) # initial copy q net -> target net copy ops = get copy var ops(dest scope name="target", src scope name="main") sess.run(copy ops) for episode in range(MAX EPISODES): e = 1 / ((episode / 10) + 1) done = False step count = 0state = env.reset() while not done: if np.random.rand() < e:</pre> action = env.action space.sample() else: # Choose an action by greedily from the Q-network action = np.argmax(mainDQN.predict(state)) # Get new state and reward from environment next_state, reward, done, _ = env.step(action) if done: # Penalty reward = -1# Save the experience to our buffer replay buffer.append((state, action, reward, next state, done)) if len(replay buffer) > BATCH SIZE: minibatch = random.sample(replay buffer, BATCH SIZE) loss, = replay train(mainDQN, targetDQN, minibatch) if step count % TARGET UPDATE FREQUENCY == 0: sess.run(copy ops) state = next state

print("Episode: {} steps: {}".format(episode, step_count))

step count += 1

Big picture for the implementation of DQN



PG implementation

http://karpathy.github.io/2016/05/31/rl/ https://github.com/hunkim/DeepLearningZeroToAll

- 08_1_pg_cartpole.py

PG Code

Algorithm 1 "Vanilla" policy gradient algorithm

Initialize policy parameter θ , baseline b

for iteration= $1, 2, \ldots$ do

Collect a set of trajectories by executing the current policy At each timestep in each trajectory, compute the return $R_t = \sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'}$, and the advantage estimate $\hat{A}_t = R_t - b(s_t)$. Re-fit the baseline, by minimizing $||b(s_t) - R_t||^2$, summed over all trajectories and timesteps. Update the policy, using a policy gradient estimate \hat{g} , which is a sum of terms $\nabla_{\theta} \log \pi(a_t | s_t, \theta) \hat{A}_t$ end for

for step in range(max_num_episodes): # Initialize x stack, y stack, and rewards xs = np.empty(shape=[0, input_size]) ys = np.empty(shape=[0, 1]) rewards = np.empty(shape=[0, 1])

reward_sum = 0
observation = env.reset()

while True:

x = np.reshape(observation, [1, input_size])

```
# Run the neural net to determine output
action_prob = sess.run(action_pred, feed_dict={X: x})
```

Determine the output based on our net, allowing for some randomness action = 0 if action_prob < np.random.uniform() else 1</pre>

```
# Append the observations and outputs for learning
xs = np.vstack([xs, x])
ys = np.vstack([ys, action]) # Fake action
```

```
# Determine the outcome of our action
observation, reward, done, _ = env.step(action)
rewards = np.vstack([rewards, reward])
reward sum += reward
```

if done:

PG Code

Algorithm 1 "Vanilla" policy gradient algorithm Initialize policy parameter θ , baseline b

for iteration= $1, 2, \ldots$ do

Collect a set of trajectories by executing the current policy

At each timestep in each trajectory, compute the return $R_t = \sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'}$, and the advantage estimate $\hat{A}_t = R_t - b(s_t)$. Re-fit the baseline, by minimizing $||b(s_t) - R_t||^2$, summed over all tra Update the policy, us which is a sum of to end for

for step in range(max_num_episodes): # Initialize x stack, y stack, and rewards xs = np.empty(shape=[0, input_size]) ys = np.empty(shape=[0, 1]) rewards = np.empty(shape=[0, 1])

reward_sum = 0
observation = env.reset()

while True:

x = np.reshape(observation, [1, input_size])

```
# Run the neural net to determine output
action_prob = sess.run(action_pred, feed_dict={X: x})
```

```
# Determine the output based on our net, allowing for some randomness
action = 0 if action prob < np.random.uniform() else 1</pre>
```

```
# Append the observations and outputs for learning
xs = np.vstack([xs, x])
ys = np.vstack([ys, action]) # Fake action
```

```
# Determine the outcome of our action
observation, reward, done, _ = env.step(action)
rewards = np.vstack([rewards, reward])
```

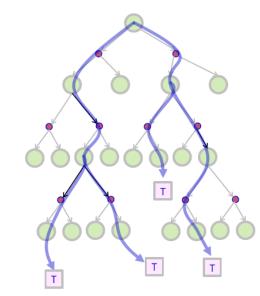
reward_sum += reward

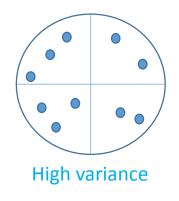
if done:

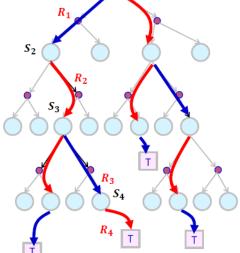
PG Code: Q learning vs Policy gradient

Q learning	Policy gradient
 Learning Q(s,a): modeling (Reward) values of actions Value based approach: learning Q values 	 Learning π(a): modeling probability of actions Policy based approach: learning policy directly
 Deterministic policies: e.g., cannot model rock-paper-scissors game 	 Stochastic policies e.g., can model rock-paper-scissors game
 Off-policy: an action is taken greedily Greed search to calculate Q(s,a) and then determine a policy 	 On-policy: an action is taken with a policy Following a trajectory created by a policy and update it with given reward at the end.
 Learning update occurred step-by-step (bootstrapping) 	 Learning update occurred episode-by-episode

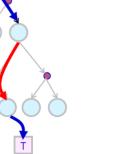
- Learning update occurred episode-by-episode
 - High variance but low bias -

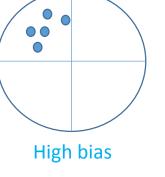






Low variance but high bias





PG Code

Algorithm 1 "Vanilla" policy gradient algorithm Initialize policy parameter θ , baseline bfor iteration=1,2,... do Collect a set of trajectories by executing the current policy At each timestep in each trajectory, compute the return $R_t = \sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'}$, and the advantage estimate $\hat{A}_t = R_t - b(s_t)$. Re-fit the baseline, by minimizing $||b(s_t) - R_t||^2$, summed over all trajectories and timesteps. Update the policy, using a policy gradient estimate \hat{g} , which is a sum of terms $\nabla_{\theta} \log \pi(a_t | s_t, \theta) \hat{A}_t$ end for for step in range(max_num_episodes):
 # Initialize x stack, y stack, and rewards
 xs = np.empty(shape=[0, input_size])
 ys = np.empty(shape=[0, 1])
 rewards = np.empty(shape=[0, 1])

reward_sum = 0
observation = env.reset()

while True:

x = np.reshape(observation, [1, input_size])

```
# Run the neural net to determine output
action_prob = sess.run(action_pred, feed_dict={X: x})
```

Determine the output based on our net, allowing for some randomness action = 0 if action_prob < np.random.uniform() else 1</pre>

discounted rewards = (discounted rewards - discounted rewards.mean())

/(discounted rewards.std() + 1e-7)

feed dict={X: xs, Y: ys, advantages: discounted rewards})

```
# Append the observations and outputs for learning
xs = np.vstack([xs, x])
ys = np.vstack([ys, action]) # Fake action
```

```
# Determine the outcome of our action
observation, reward, done, _ = env.step(action)
rewards = np.vstack([rewards, reward])
reward_sum += reward
```

discounted rewards = discount rewards(rewards)

Determine standardized rewards

l, = sess.run([loss, train],

Normalization

If an episode finishes, if done:

- 1) Discounted reward is calculated
- 2) Then, it is normalized
 - http://karpathy.github.io/2016/05/31/rl/

PG Code

Algorithm 1 "Vanilla" policy gradient algorithm

Initialize policy parameter θ , baseline b

for iteration= $1, 2, \ldots$ do

Collect a set of trajectories by executing the current policy At each timestep in each trajectory, compute the return $R_t = \sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'}$, and the advantage estimate $\hat{A}_t = R_t - b(s_t)$. Re-fit the baseline, by minimizing $||b(s_t) - R_t||^2$, summed over all trajectories and timesteps. Update the policy, using a policy gradient estimate \hat{g} , which is a sum of terms $\nabla_{\theta} \log \pi(a_t | s_t, \theta) \hat{A}_t$ end for

Loss function: log_likelihood * advantages
log_lik = -Y*tf.log(action_pred) - (1 - Y)*tf.log(1 - action_pred)
loss = tf.reduce_sum(log_lik * advantages)

Learning
train = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)

```
for step in range(max_num_episodes):
    # Initialize x stack, y stack, and rewards
    xs = np.empty(shape=[0, input_size])
    ys = np.empty(shape=[0, 1])
    rewards = np.empty(shape=[0, 1])
```

reward_sum = 0
observation = env.reset()

while True:

x = np.reshape(observation, [1, input_size])

```
# Run the neural net to determine output
action_prob = sess.run(action_pred, feed_dict={X: x})
```

Determine the output based on our net, allowing for some randomness action = 0 if action_prob < np.random.uniform() else 1</pre>

```
# Append the observations and outputs for learning
xs = np.vstack([xs, x])
ys = np.vstack([ys, action]) # Fake action
```

```
# Determine the outcome of our action
observation, reward, done, _ = env.step(action)
rewards = np.vstack([rewards, reward])
reward_sum += reward
```

if done:

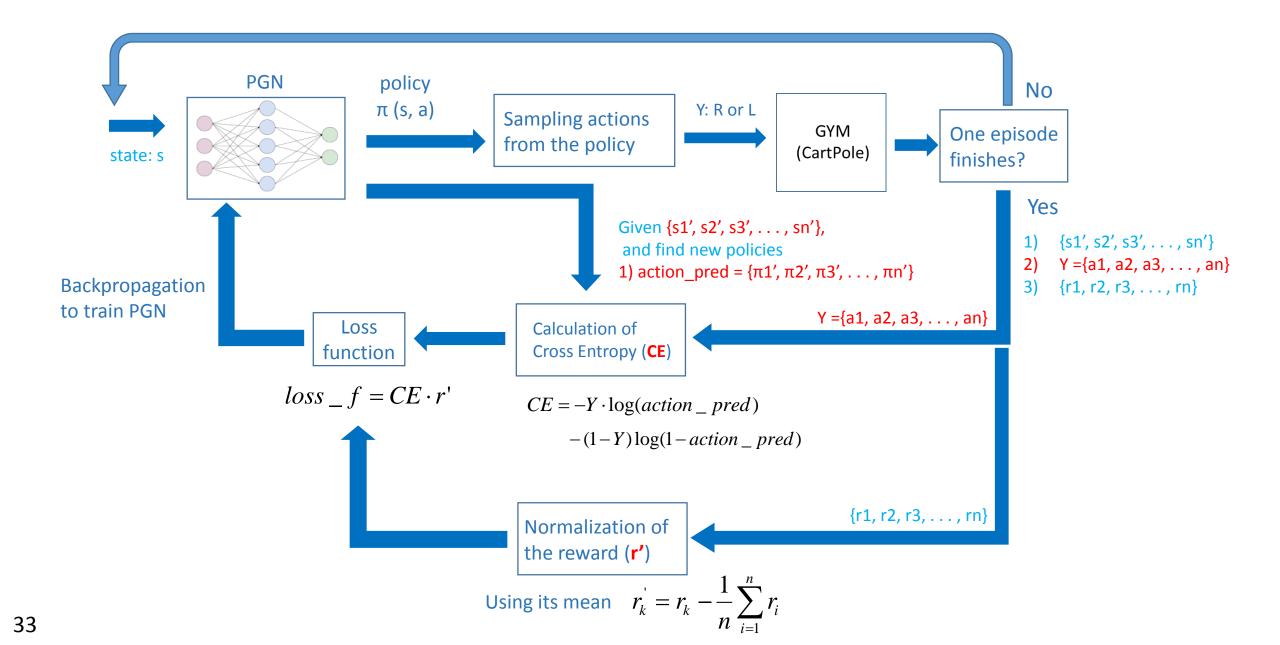
Determine standardized rewards
discounted rewards = discount rewards(rewards)

```
# Normalization
```

```
l, _ = sess.run([loss, train],
```

feed_dict={X: xs, Y: ys, advantages: discounted_rewards})

Big picture for the implementation of PG

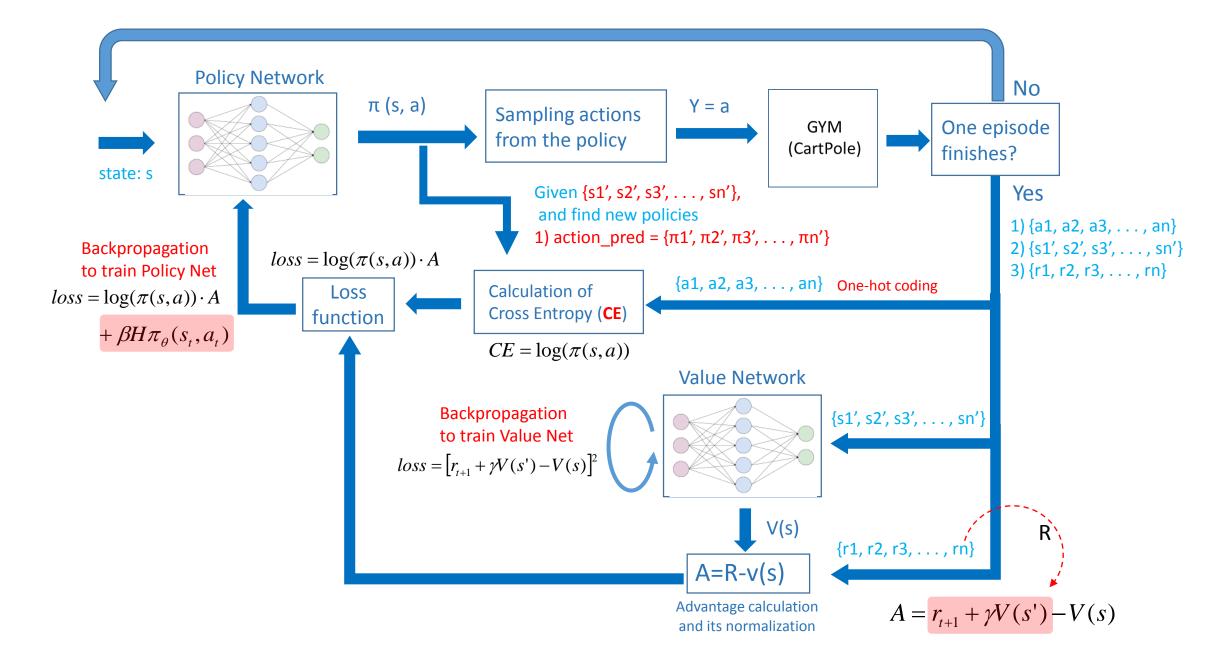


Actor Advantage Critic (A2C)

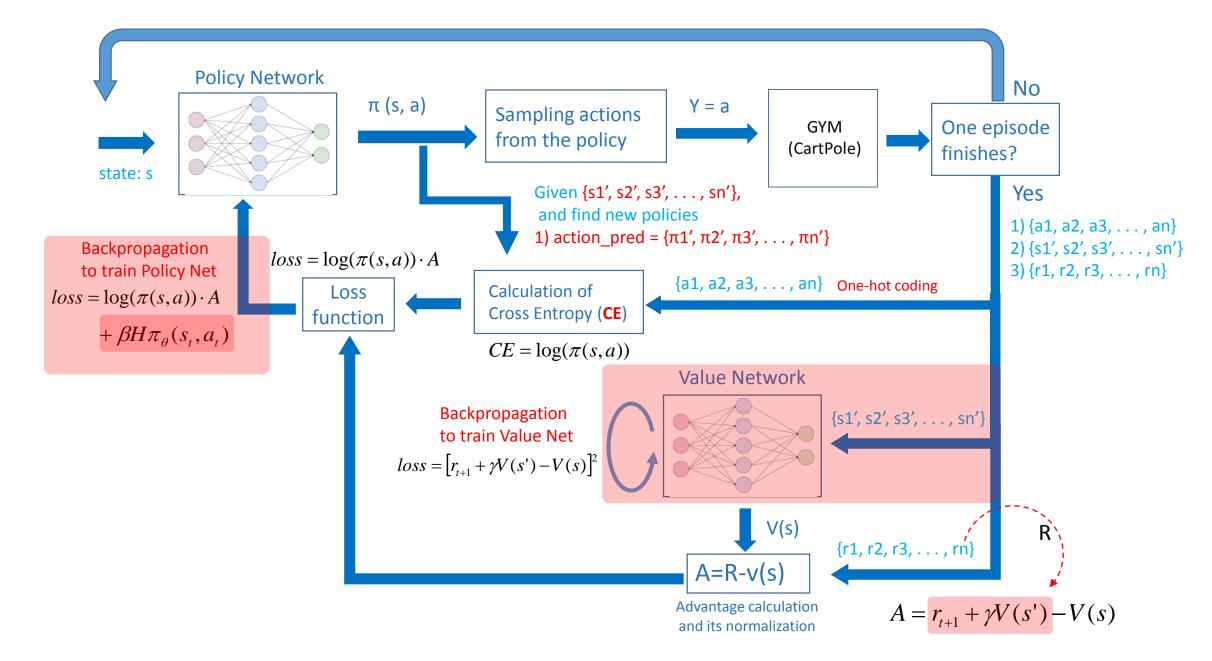
https://github.com/hunkim/DeepLearningZeroToAll

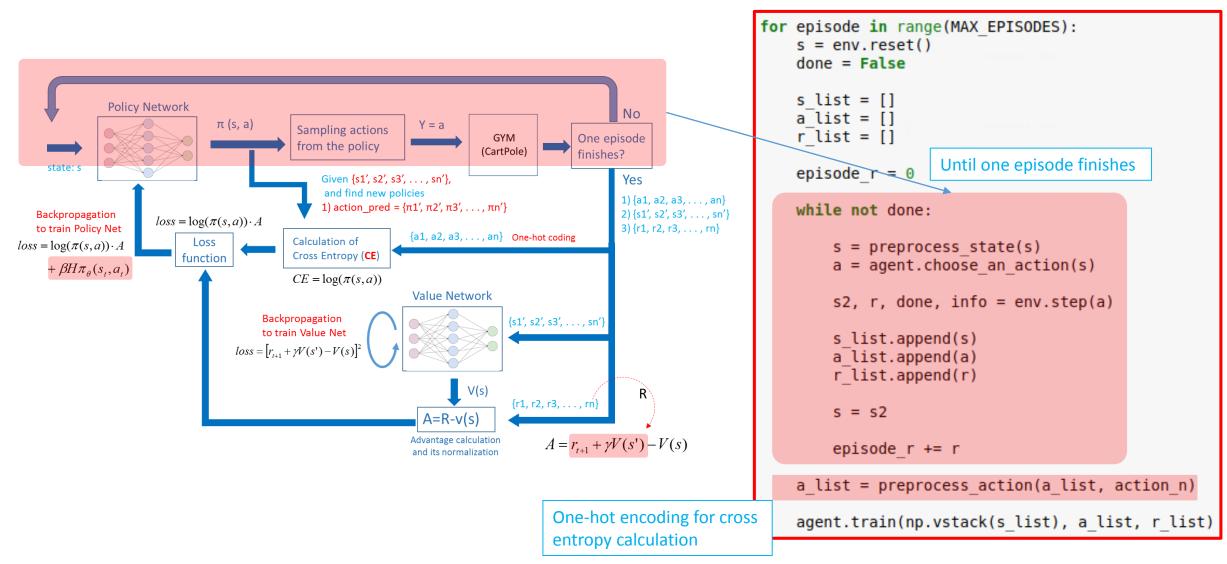
- 10_1_Actor_Critic.ipynb

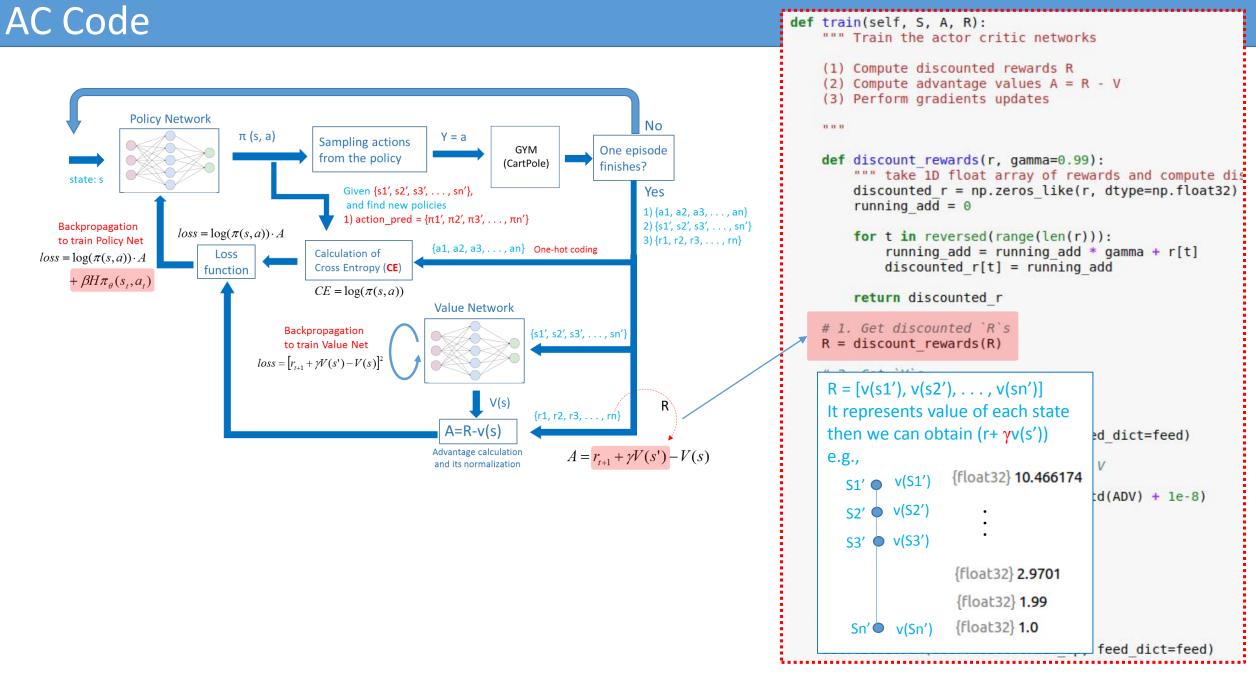
Big picture for the implementation of AC

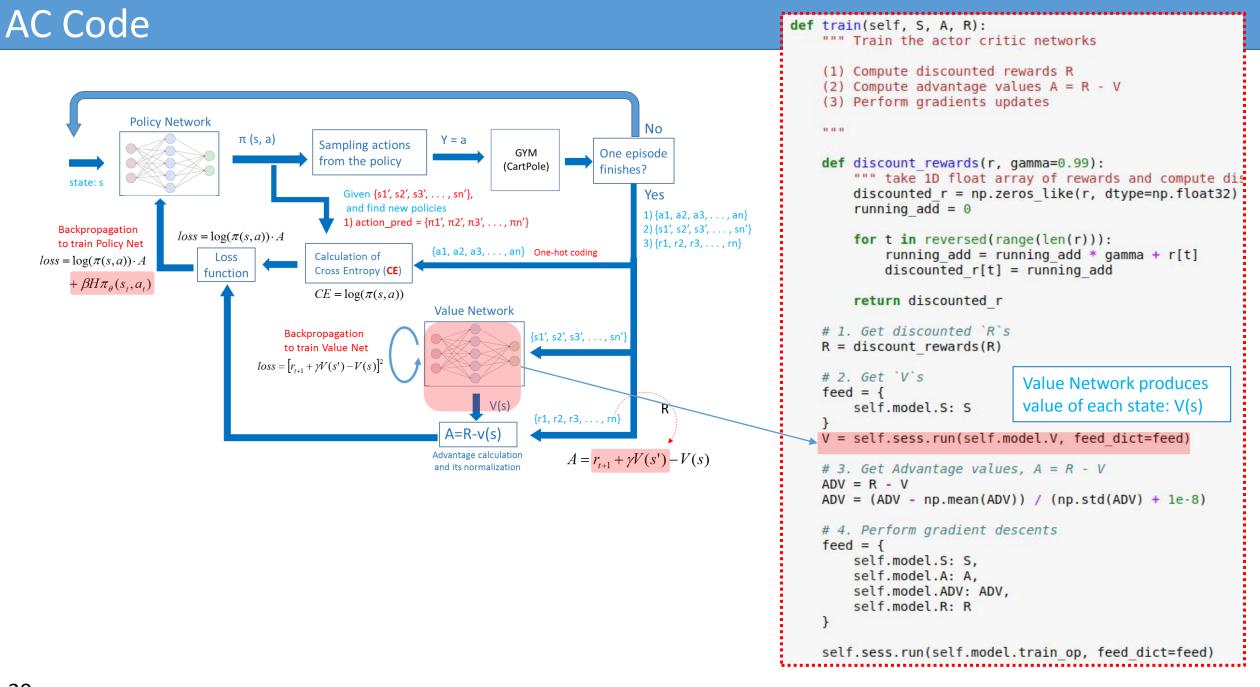


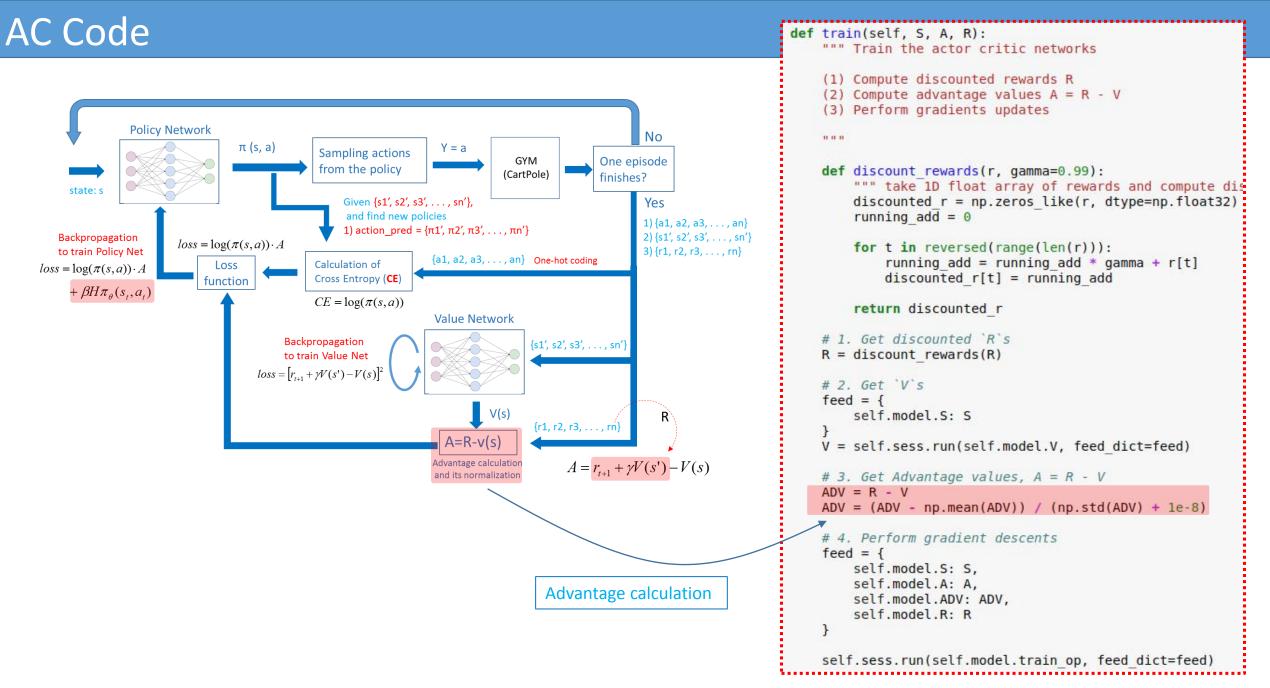
Big picture for the implementation of AC



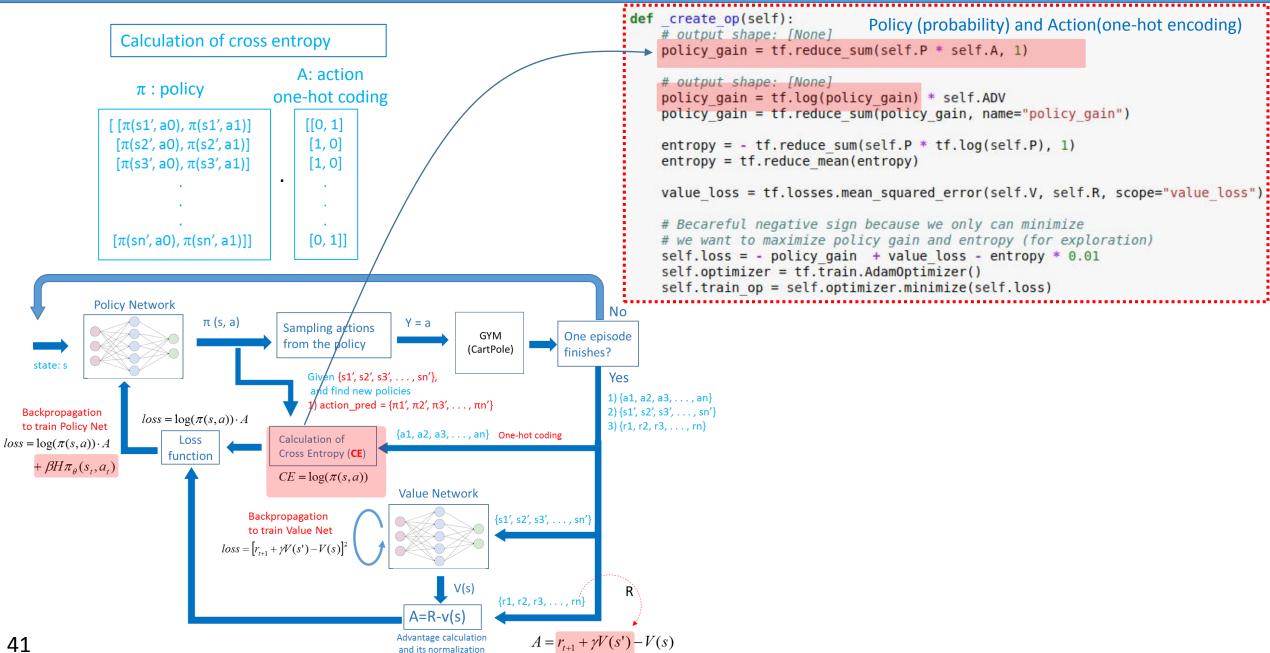




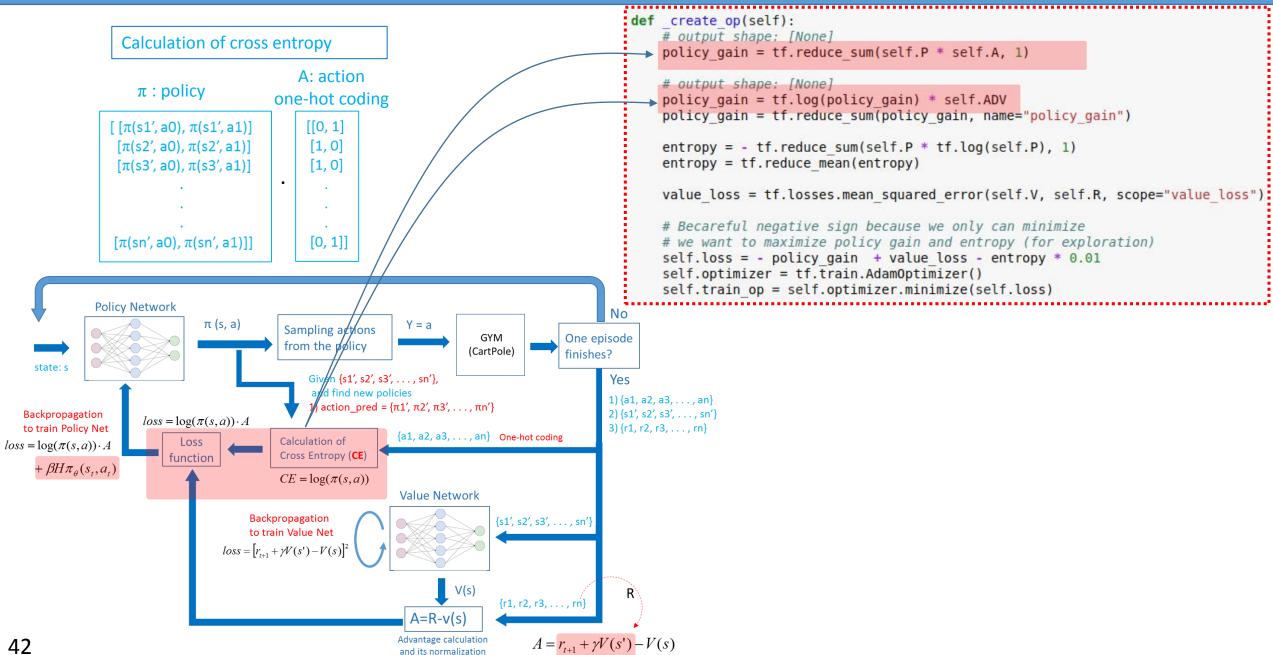


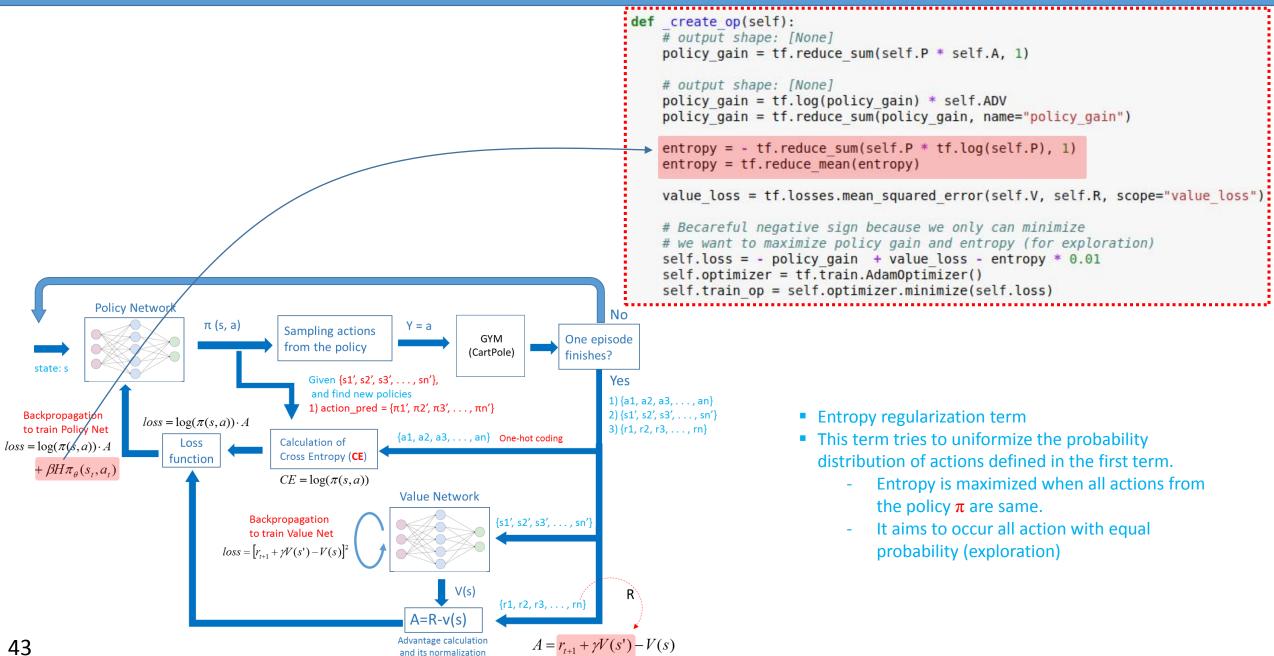


AC Code

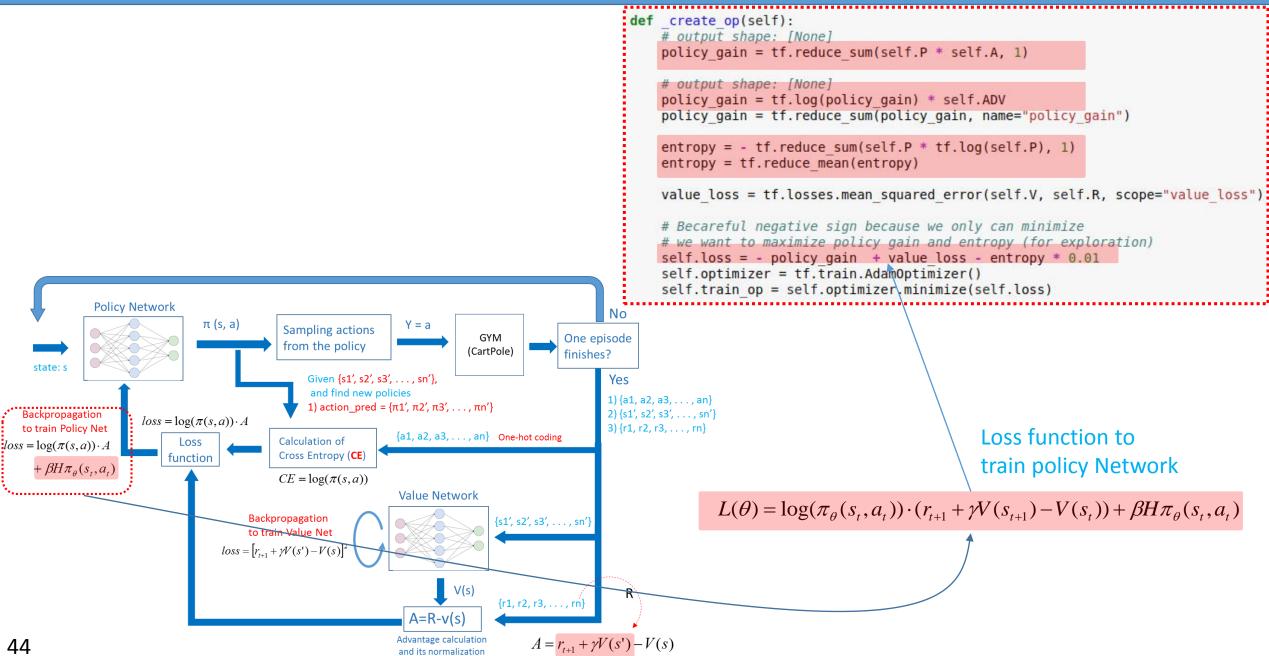


AC Code

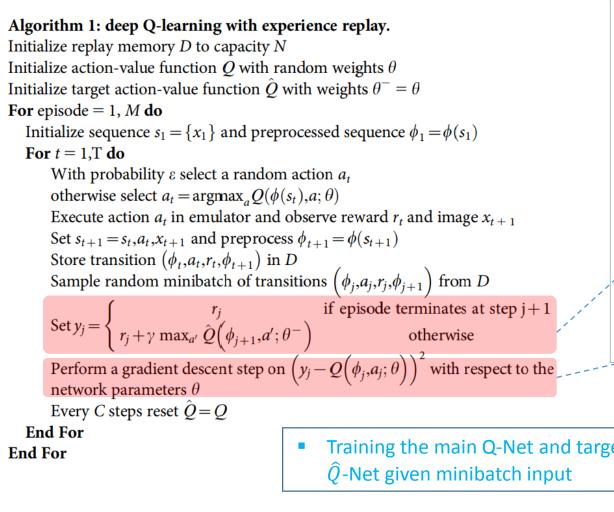




AC Code: Loss function



Backup Slides



store the previous observations in replay memory
replay_buffer = deque(maxlen=REPLAY_MEMORY)

last_100_game_reward = deque(maxlen=100)

	<pre>with tf.Session() as sess:</pre>		1
def	<pre>replay_train(mainDQN: dqn.DQN, targetDQN: d """Trains `mainDQN` with target Q values gi Args: mainDQN (dqn.DQN): Main DQN that will b targetDQN (dqn.DQN): Target DQN that wi train_batch (list): Minibatch of replay Each element is (s, a, r, s', done) [(state, action, reward, next_state</pre>	<pre>y = np.array([[1,2], [4,7], [5,3]]) print ("Before: " , "\n" , y) action = [1,0,1]</pre>	
	Returns: float: After updating `mainDQN`, it ret	<pre>print ("After: ", "\n", y)</pre>	
	<pre>states = np.vstack([x[0] for x in train_bat actions = np.array([x[1] for x in train_bat rewards = np.array([x[2] for x in train_bat next_states = np.vstack([x[3] for x in train_ done = np.array([x[4] for x in train_batch]</pre>	[[1 2] [4 7] • 3 batch samples • Each sample: Q(R), Q(L)	
	X = states	Insert target Q value into Y at	
.*	<pre>Q_target = rewards + DISCOUNT_RATE * np.max</pre>	 [20 7] [5 30]] Iocation; a=[1,0,1] Q network needs to be trained to produce this value 	don
	<pre>y = mainDQN.predict(states) y[np.arange(len(X)), actions] = Q_target</pre>		1
	<pre># Train our network using target and predi return mainDQN.update(X, y)</pre>	Tricky part! h episode	
	reward = -1	•	
	<pre># Save the experience to replay_buffer.append((sta</pre>	<pre>oux buffer nte, action, reward, next_state, done))</pre>	
get		BATCH SIZE: ample(replay_buffer, BATCH_SIZE) .n(mainDQN, targetDQN, minibatch)	
	<pre>if step_count % TARGET_UP sess.run(copy_ops)</pre>	DATE_FREQUENCY == 0:	
	<pre>state = next_state step_count += 1</pre>		

print("Episode: {} steps: {}".format(episode, step_count))