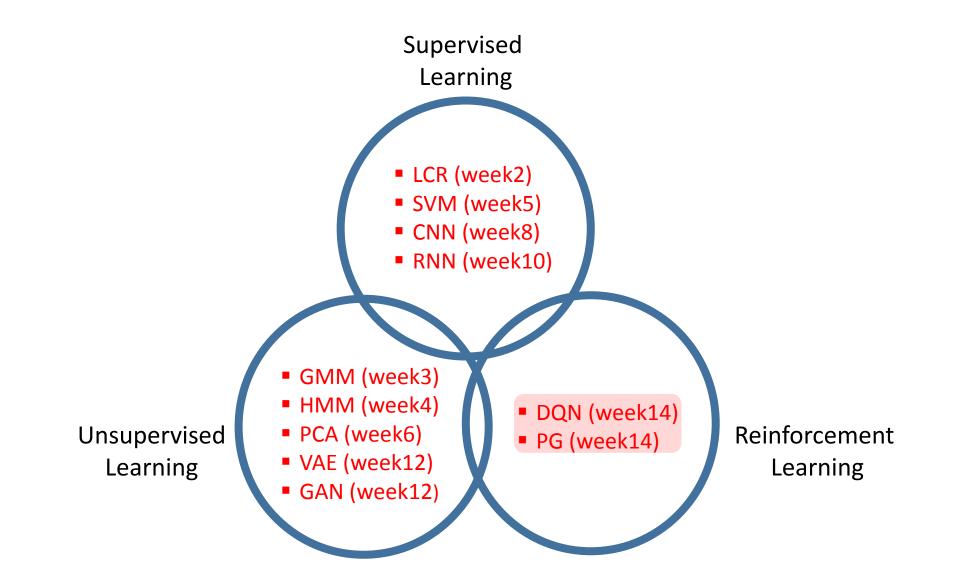


Practical Machine Learning

Lecture 14 Reinforcement Learning (RL): Deep Q Networks (DQN) and Policy Gradient (PG: AC/A3C)

Dr. Suyong Eum

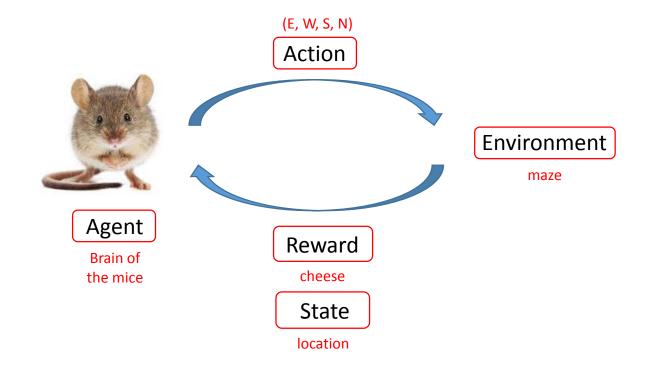


You are going to learn

- □ What Reinforcement Learning (RL) is
- Deep Q Network (DQN)
- Policy Gradient (PG)
 - Actor Critic (AC)
 - Asynchronous Advantage Actor Critic (A3C)

Big picture: Reinforcement Learning (RL)

Learning how to take actions in an environment so as to maximize future cumulative reward.



Reinforcement Learning (RL) has been around for a long time

- Reinforcement Learning (RL) has been used for many applications where an agent interacts with an environment while trying to learn optimal sequence of decisions – optimal control problems:
 - Manufacturing, e.g., robot arms to assemble cars.
 - Financial strategy, e.g., buy or sell to maximize the value of the portfolio
 - Inventory management or resource management
 - Crites, R.H. and Barto, A.G. (1998). Elevator Group Control Using Multiple Reinforcement Learning Agents. Machine Learning, 33:235-262.
 - Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A Survey. Journal of Artificial Intelligence Research, 4:237-285.
 - Singh, S., Kearns, M. (2002). Near-Optimal Reinforcement Learning in Polynomial Time. Machine Learning journal, Volume 49, Issue 2, pages 209-232, 2002.
 - Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36:241-263.
 - Sutton, R. S. (1984). Temporal credit assignment in reinforcement learning. PhD thesis, University of Massachusetts, Amherst
 - Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples using sparse coding. In D. S. Touretzky, M. C. Mozer and M. E. Hasselmo (eds.) Advances in Neural Information Processing, pp. 1038-1044, MIT Press, Cambridge, CA.
 - Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. Bradford Books, MIT Press, Cambridge, MA, 2002 edition.

5

Shed new light on RL with neural networks

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

Daan Wierstra Martin Riedmiller

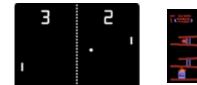
DeepMind Technologies

{vlad,koray,david,alex.graves,ioannis,daan,martin.riedmiller} @ deepmind.com

Abstract

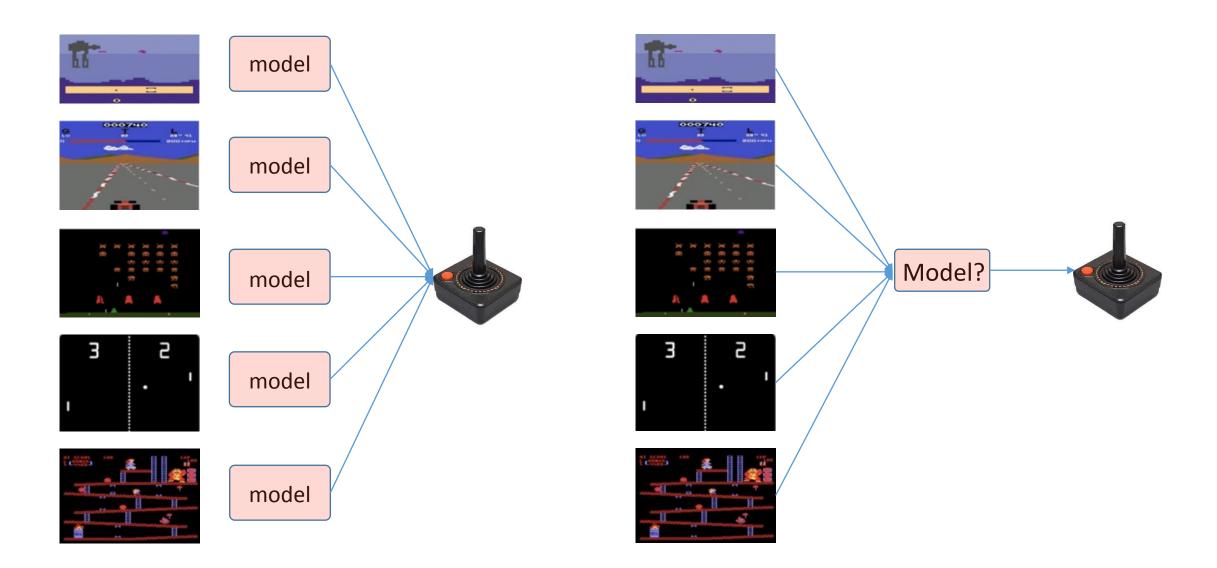
We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learning Environment, with no adjustment of the architecture or learning algorithm. We find that it outperforms all previous approaches on six of the games and surpasses a human expert on three of them.

2013



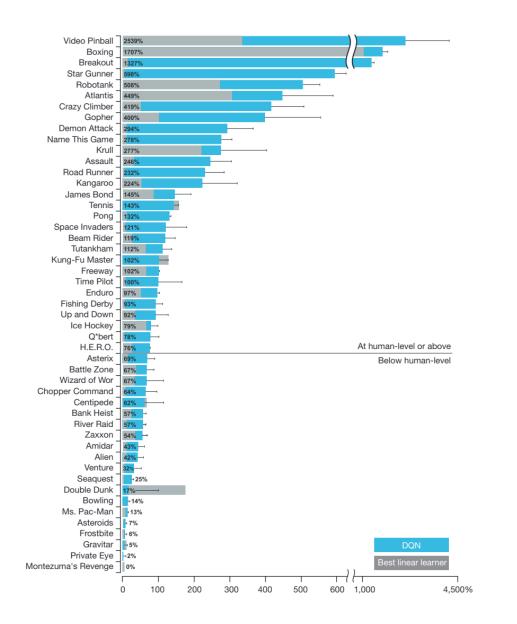
2015

Shed new light on RL with neural networks – cont.



How to model the environment?

How good is the reinforcement learning algorithm?



20 July 2016

- Human-level control through deep reinforcement learning, Feb. 26, 2015, Nature
- https://deepmind.com/applied/deepmind-for-google/

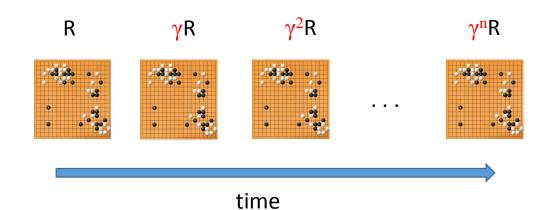
Terminology

- 1) State (S)
- 2) Reward (R)
 - Discount factor (γ)
- 3) Policy (π)
 - Action (A)
- 4) Environment
 - Transit Probability (P)

- A representation of environment that an agent recognizes.
- A agent takes an action given state
- E.g., pixel information as shown below

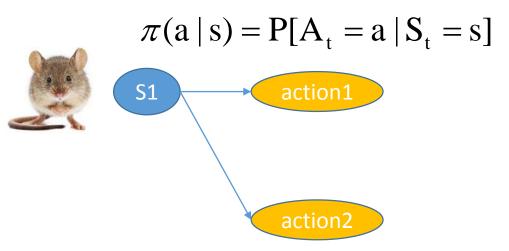
- 1) State (S)
- 2) Reward (R)
 - Discount factor (γ)
- 3) Policy (π)
 - Action (A)
- 4) Environment
 - Transit Probability (P)

- When an agent takes an action, it considers two types of rewards
 - 1. Immediate reward
 - 2. Future accumulated reward
- Reward in a different time step may need to be treated differently: γ[0,1]



- 1) State (S)
- 2) Reward (R)
 - Discount factor (γ)
- 3) Policy (π)
 - Action (A)
- 4) Environment
 - Transit Probability (P)

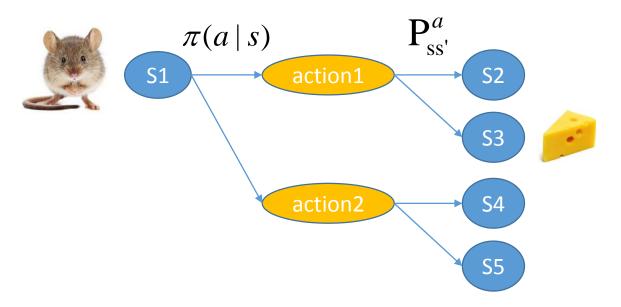
- Agent has a set of actions given state
- Policies π is a distribution over actions given states: probability of action *a* given state *s*
 - Deterministic policy: $a = \pi(s)$
 - Stochastic policy: π(a|s)

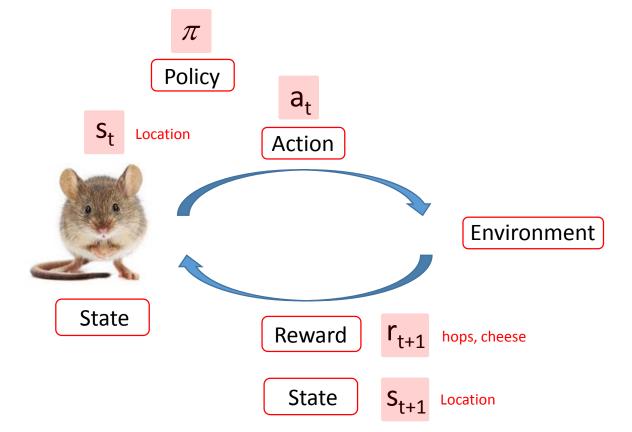


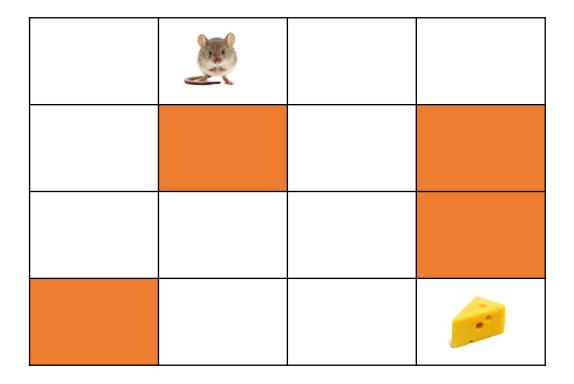
- 1) State (S)
- 2) Reward (R)
 - Discount factor (γ)
- 3) Policy (π)
 - Action (A)
- 4) Environment
 - Transit Probability (P)

- Due to uncertainty of environment, an action taken by an agent does not guarantee to a certain state.
- The uncertainty is represented as transition probability.

$$P_{ss'}^{a} = P^{a}[S_{t+1} = s' | S_{t} = s, A_{t} = a]$$



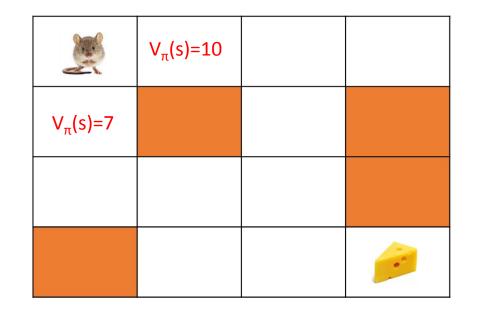




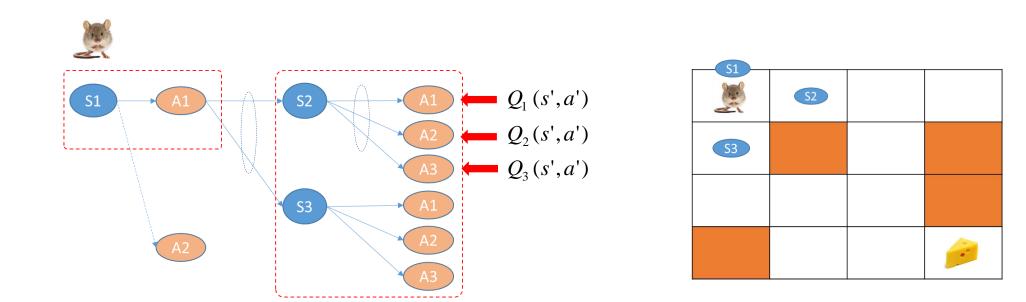
$$r_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \dots = \sum_{k=1}^{\infty} \gamma^{k-1} r_{t+k}$$

How to find the optimum policy?: two functions as an signal post

- 1) State value function: $V_{\pi}(s)$
 - Expected reward when starting in state s and following policy π thereafter.
 - The mouse needs to know the value of next state before making an action.
- 2) Action value function: $Q_{\pi}(s,a)$
 - Expected reward when taking action a in state s and following policy π thereafter.
 - The mouse just needs to take an action based on Q value.



How to find the Q(s,a) function?: Q learning



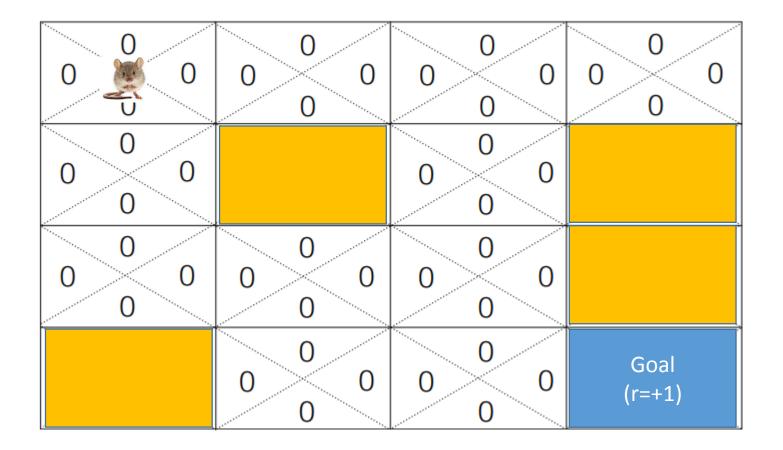
$$Q_{\pi}(s,a) = r_{s}^{a} + \gamma \max_{a'} Q_{\pi}(s',a')$$

Immediate reward

Discounted reward of successor state

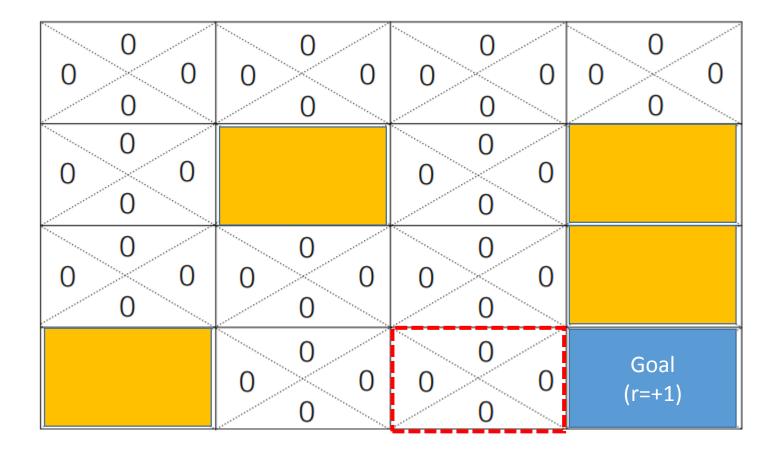
Q learning: example

One box represents a state and actions which can be taken by an agent (N, E, S, W)
 Initial Q values at individual states are set to zero

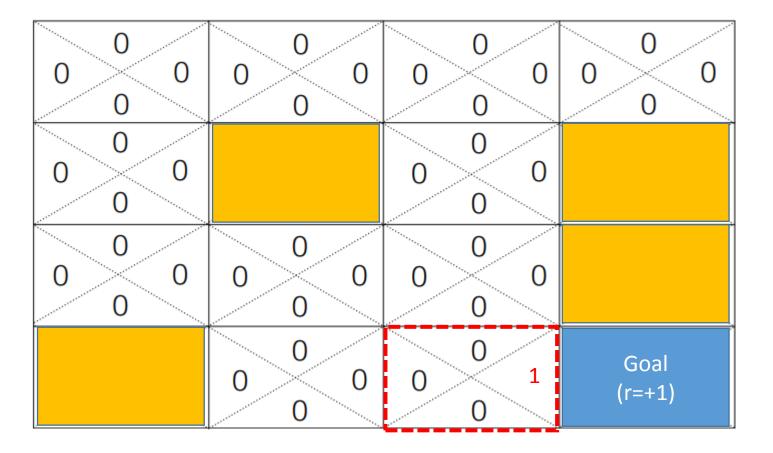


Agent takes an action at each state based on value of Q(s,a).

Assuming that an agent is at the next to the goal and takes an action to E (East).



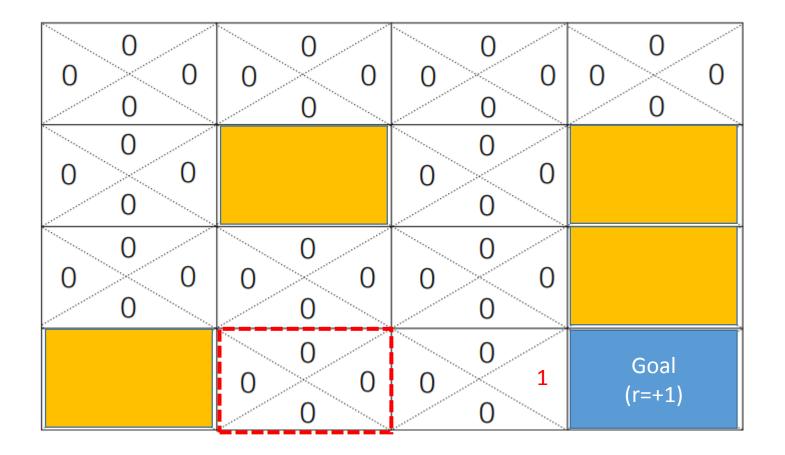
 \Box Q(s, E) is set to one: 1: (immediate reward) + 0: Q(s', a')



Q(s,a) = 1: (immediate reward) + 0: Q(s',a')

https://hunkim.github.io/ml/RL/rl03.pdf

□ Again assume that an agent ends up to the state below and takes an action to E □ Then, Q(s, E) is set to one: 0 (immediate reward) + 1 Q(s', a')

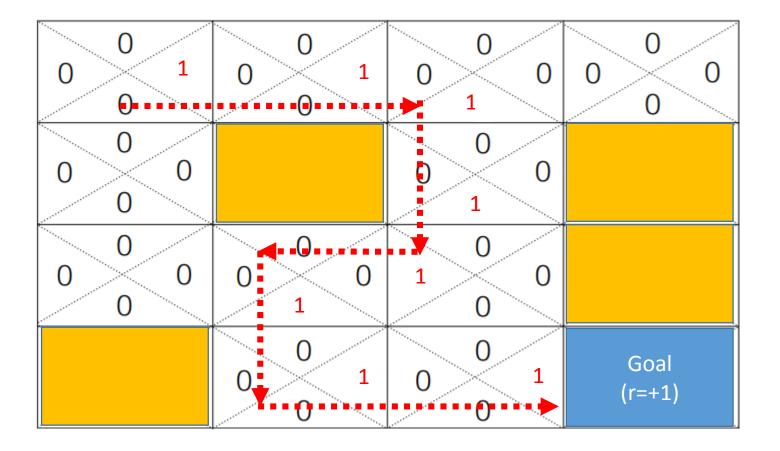


□ Again assume that an agent ends up to the state below and takes an action to E □ Then, Q(s, E) is set to one: 0 (immediate reward) + 1 Q(s', a')



Q(s,a) = 0: (immediate reward) + 1: Q(s',a')

□ In the same way, Q table can be built as follows:



Q learning: Exploit vs Exploration

E-greedy policy

e = 0.1

if rand < e: \rightarrow 10% random decision action = random else: \rightarrow 90% deterministic decision action = argmax(Q(s,a))

Decaying E-greedy policy

for i in range (1000)

e = 0.1 / (i+1) → Random to deterministic decision as iteration goes on if rand < e:

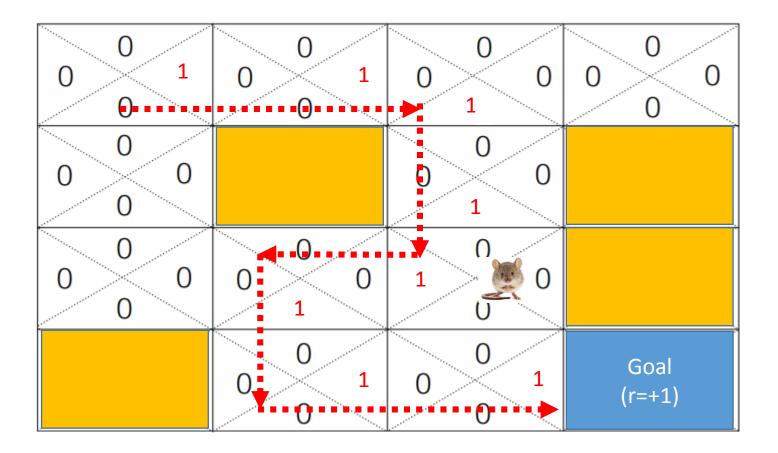
action = random

else:

action = argmax(Q(s,a))

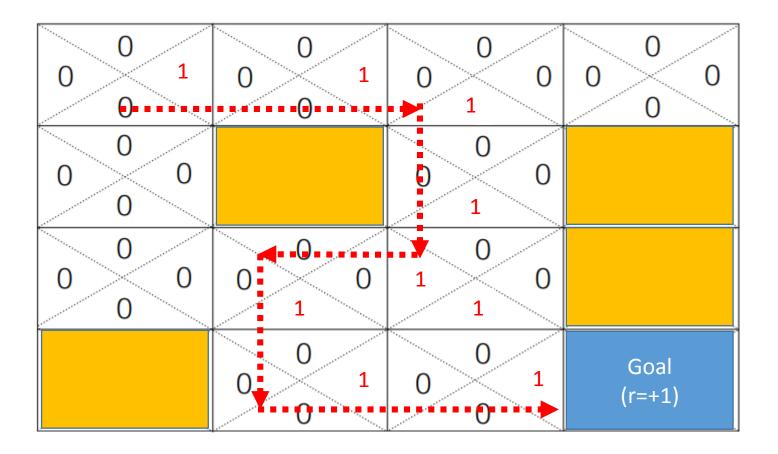
Q learning: Exploit vs Exploration

The route to the goal is not an optimum.How to select a different route occasionally?

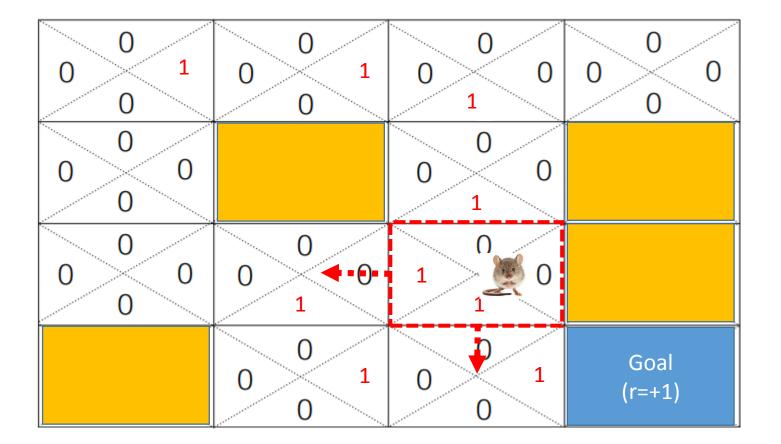


Q learning: Exploit vs Exploration

The route to the goal is not an optimum.How to select a different route occasionally?

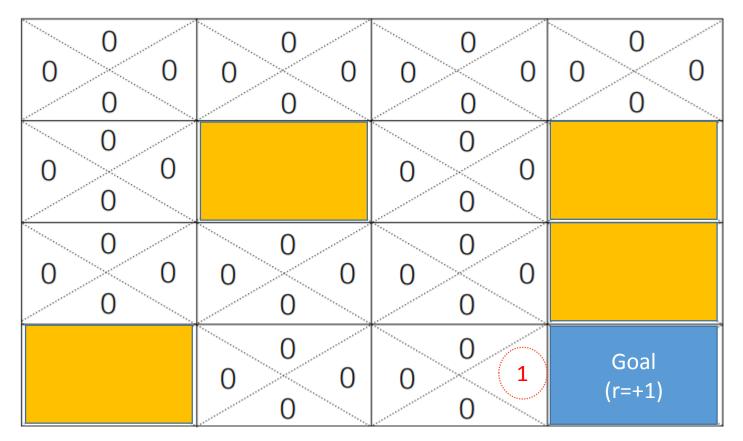


Q value does not tell which path is better



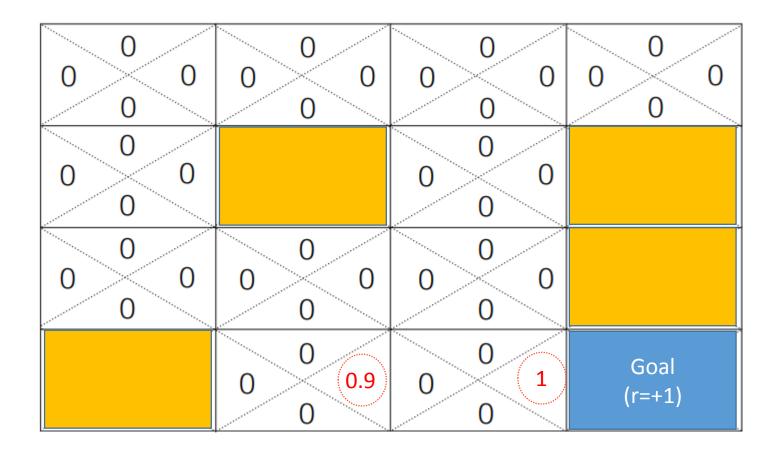
Q(s,a) = 0: (immediate reward) + 1: Q(s',a')

Q value does not tell which path is better **Let's introduce discounted reward** γ =0.9 to the equation



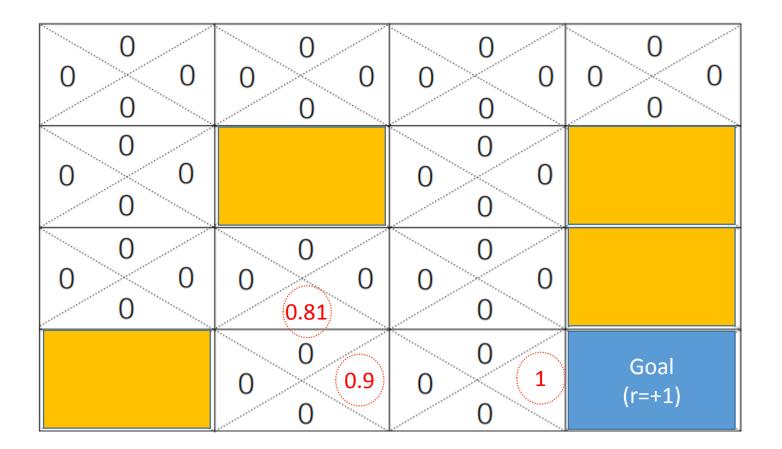
 $Q(s,a) = r + \gamma Q(s',a') = 1 + 0.9 \times 0 = 1$

Q value does not tell which path is better **Let's introduce discounted reward** γ =0.9 to the equation



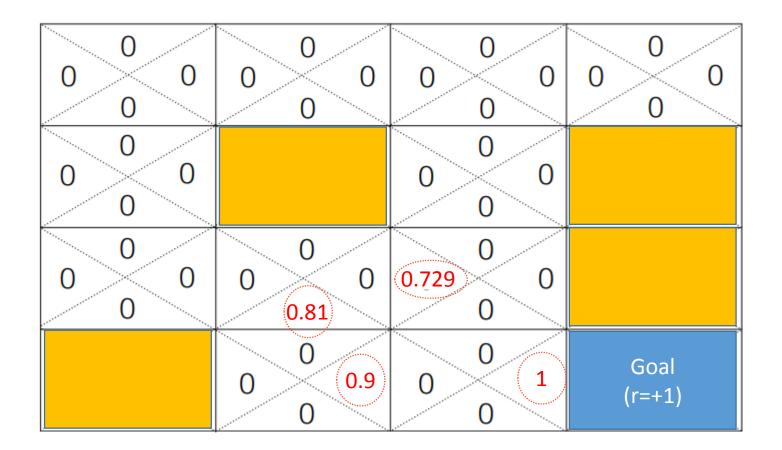
 $Q(s,a) = r + \gamma Q(s',a') = 0 + 0.9 \times 1 = 0.9$

Q value does not tell which path is better **Let's introduce discounted reward** γ =0.9 to the equation



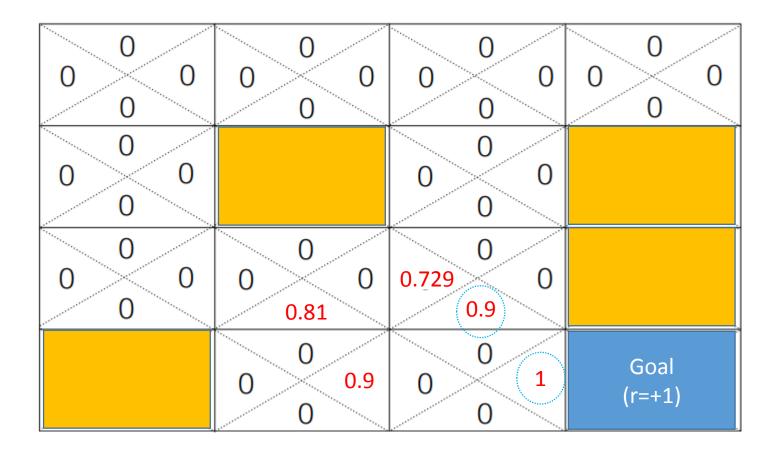
 $Q(s,a) = r + \gamma Q(s',a') = 0 + 0.9 \times 0.9 = 0.81$

Q value does not tell which path is better **Let's introduce discounted reward** γ =0.9 to the equation



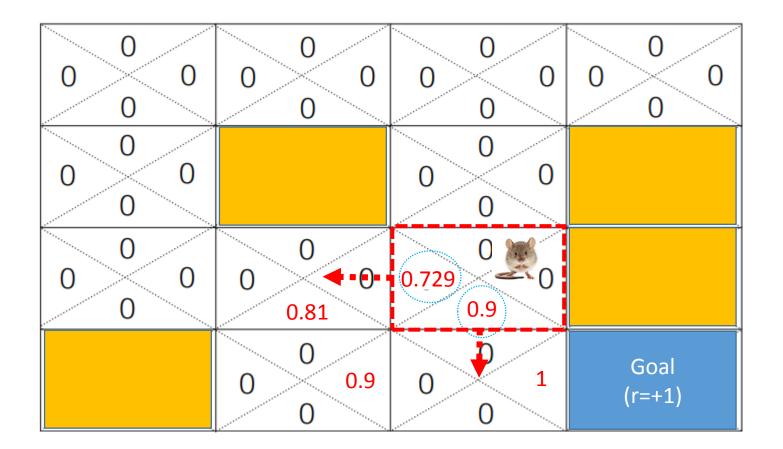
 $Q(s,a) = r + \gamma Q(s',a') = 0 + 0.9 \times 0.81 = 0.729$

Q value does not tell which path is better **Let's introduce discounted reward** γ =0.9 to the equation

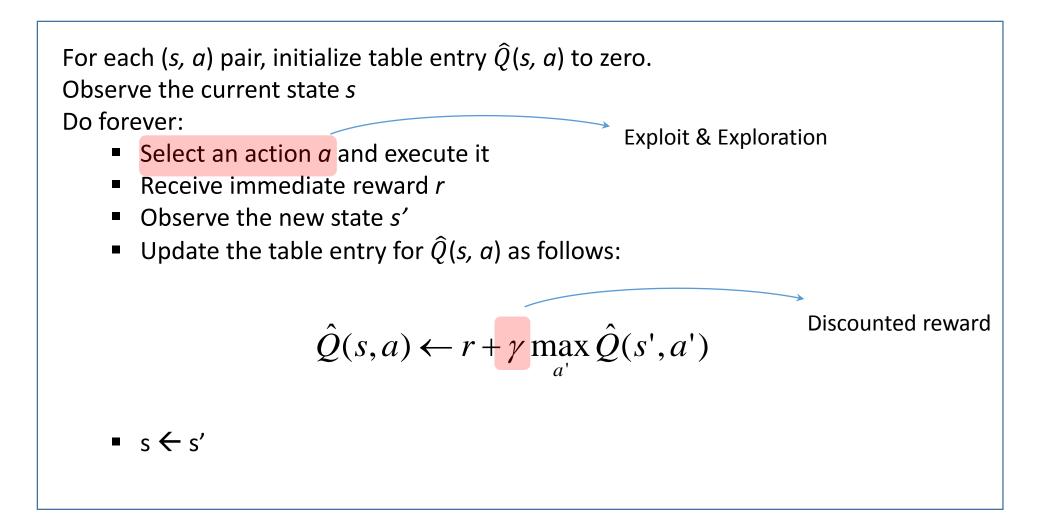


 $Q(s,a) = r + \gamma Q(s',a') = 0 + 0.9 \times 1 = 0.9$

Q value does not tell which path is better **Let's introduce discounted reward** γ =0.9 to the equation



 $Q(s,a) = r + \gamma Q(s',a') = 0 + 0.9 \times 1 = 0.9$



Deep Q-Networks (DQN)

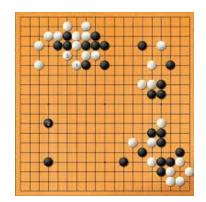
Q learning problem

Q (s,a) needs to be computed for every state(s)-action(a) pair.

- If the problem size is small, we can handle it using Q table
- U When state space is huge: computationally infeasible for entire state space
 - Backgammon: 10²⁰ states
 - Computer Go: 10¹⁷⁰ states
 - Automatic driving: continuous state space

□ Too many states to store in memory and also too slow to learn state space

Backgammon



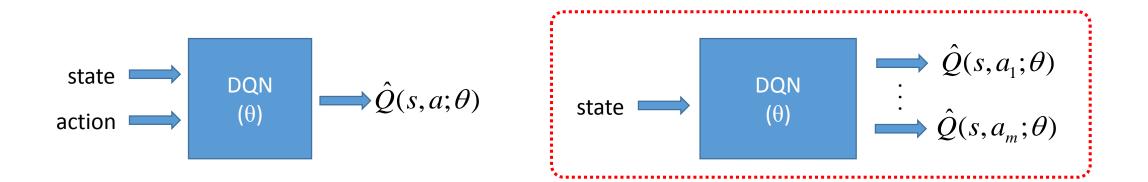
Go

Deep Q-Network (DQN)

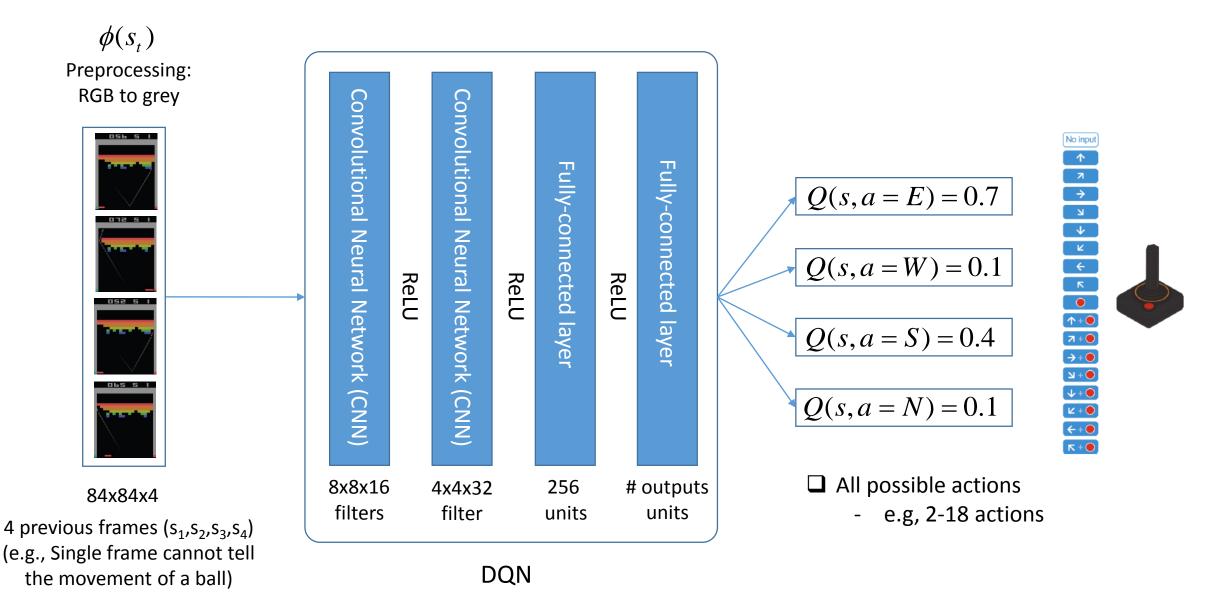
- □ In 2013, a team of DeepMind (AlphaGo) proposed convolutional neural networks as an approximation of the Q(s, a) function.
- □ Then, it was named as Deep Q-networks (DQN)

$$\hat{Q}(s,a;\boldsymbol{\theta}) \approx Q_{\pi}(s,a)$$

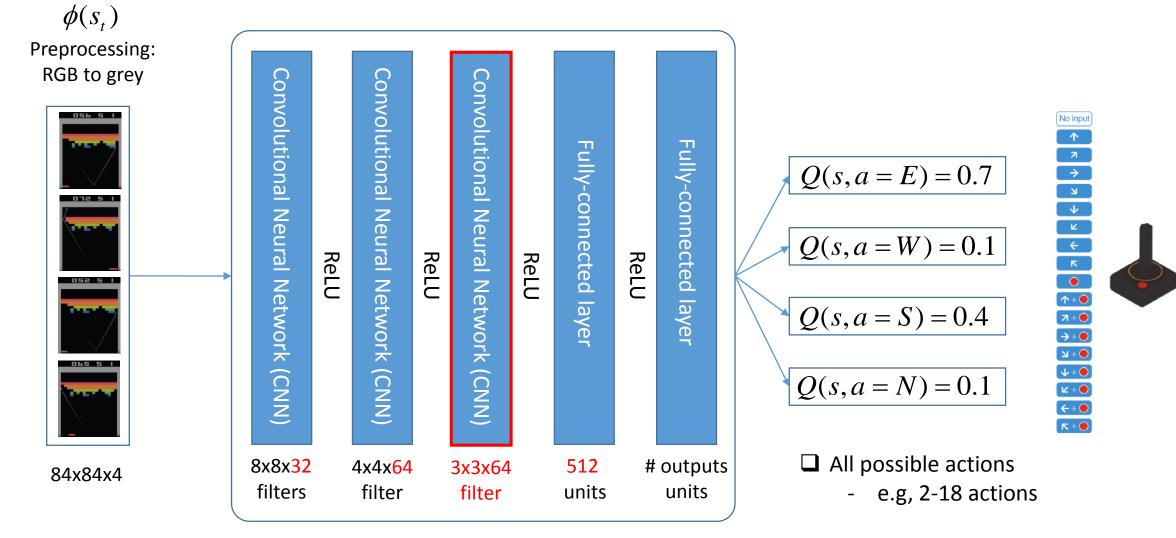
Hyper parameters + neural network parameters



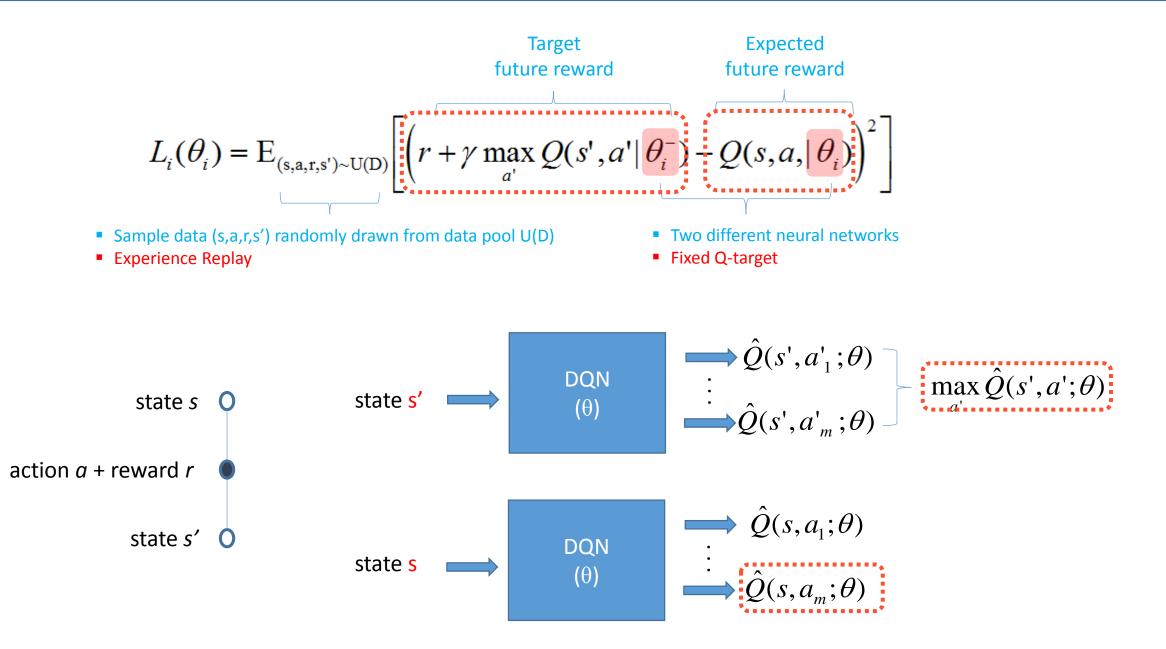
Deep Q-Network architecture (2013)



Deep Q-Network architecture (2015)



Loss function of the DQN



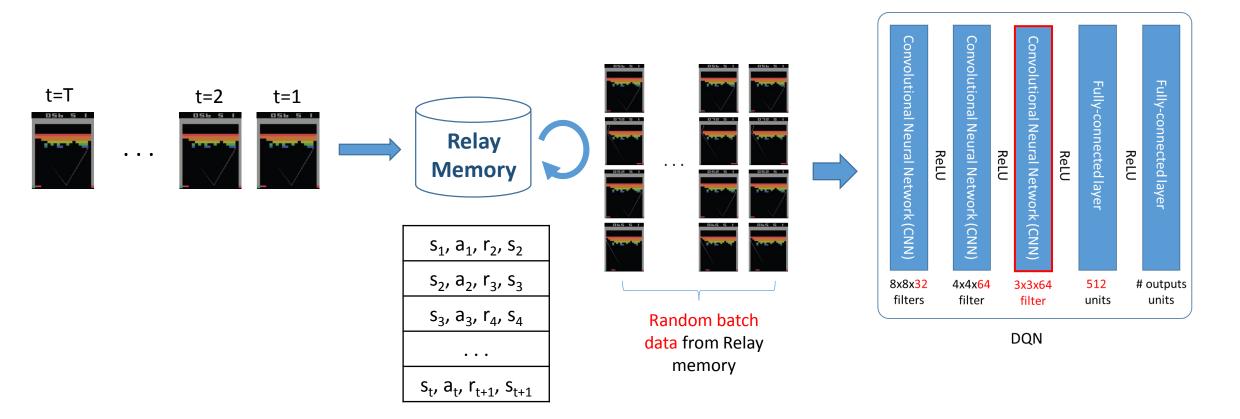
Deep Q-Network architecture (2013 & 2015)

- Neural networks were used previously for RL
 - Temporal Difference Learning and TD-Gammon (1992)
 - Deep Auto-Encoder Neural Networks in RL (2010)
- □ However, they were not successful due to oscillates or divergence of neural nets
- □ How does DQN handle this problem?
 - 1) Experience replay
 - 2) Fixed Q-targets
 - 3) Go deep

1) Experience replay

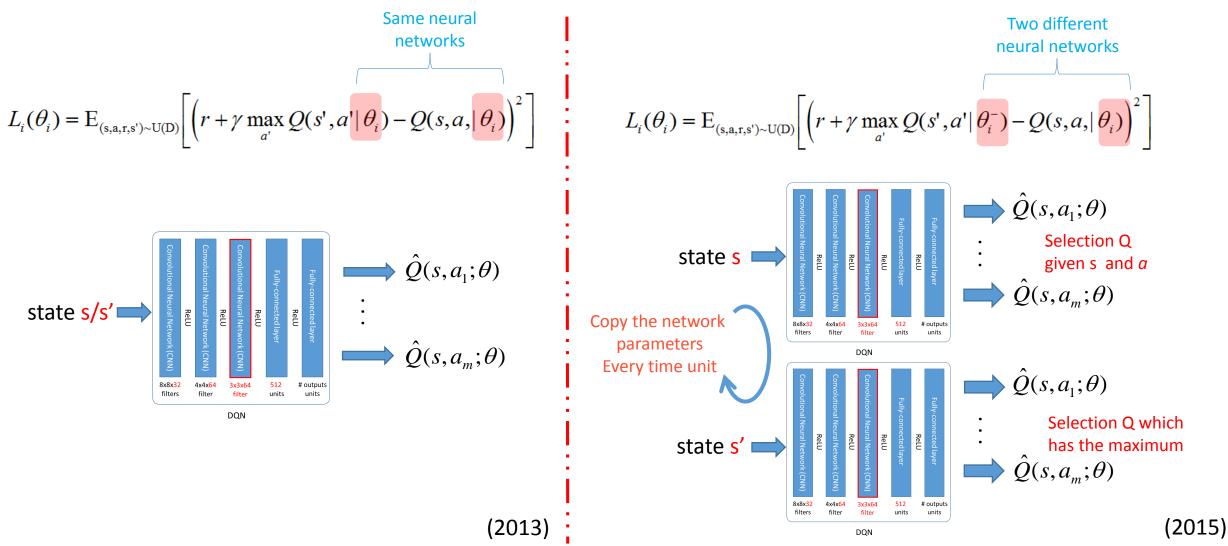
Consecutive data frames are highly correlated

□ Experience replay aims to remove the correlation between data samples



43

Originally the target future reward and the expected future reward are sharing the same neural net.



2	01	E 1		
2	UT	5 I	J	ZN

· ·	

Game	With replay, with target Q	With replay, without target Q	Without replay, with target Q	Without replay, without target Q
Breakout	316.8	240.7	10.2	3.2
Enduro	1006.3	831.4	141.9	29.1
River Raid	7446.6	4102.8	2867.7	1453.0
Seaquest	2894.4	822.6	1003.0	275.8
Space Invaders	1088.9	826.3	373.2	302.0
	•			

Algorithm (DQN 2015)

Algorithm 1: deep Q-learning with experience replay. Initialize replay memory *D* to capacity *N* ------ Data pool size and initialization Initialize action-value function Q with random weights θ ------ Weight of 1st NN initialization For episode = 1, M do Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$ ------ Preprocessing, e.g., RGB to gray For t = 1,T do With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$ Action selection using E-greedy: off-policy Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in *D* Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from *D* ------ Experience replay Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} & \text{Target future reward is obtained from NN } (\theta^-) \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the -----> Update NN (θ) without changing NN (θ) network parameters θ Every C steps reset $\hat{Q} = Q$ ------ Replace NN (θ) with NN (θ) every C steps **End For End For**

Policy Gradient (PG)

Difference between DQN and Policy Gradient

 \Box When we can approximate Q function for all states and action pairs, we can obtain the optimal π^* by following way:

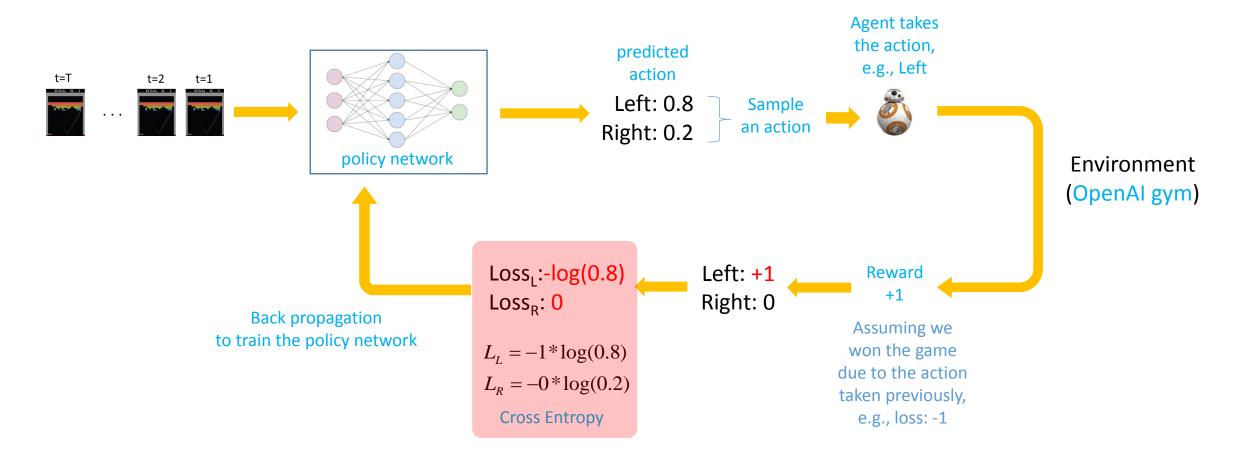
 $\pi^*(s) = \arg\max_a Q(s,a)$: optimal policy

 \Box Policy Gradient (PG) directly optimizes the policy function π without obtaining Q function.

- Similar to DQN, PG can also use a neural network (Policy Network): the output is the probability of each action at given state.

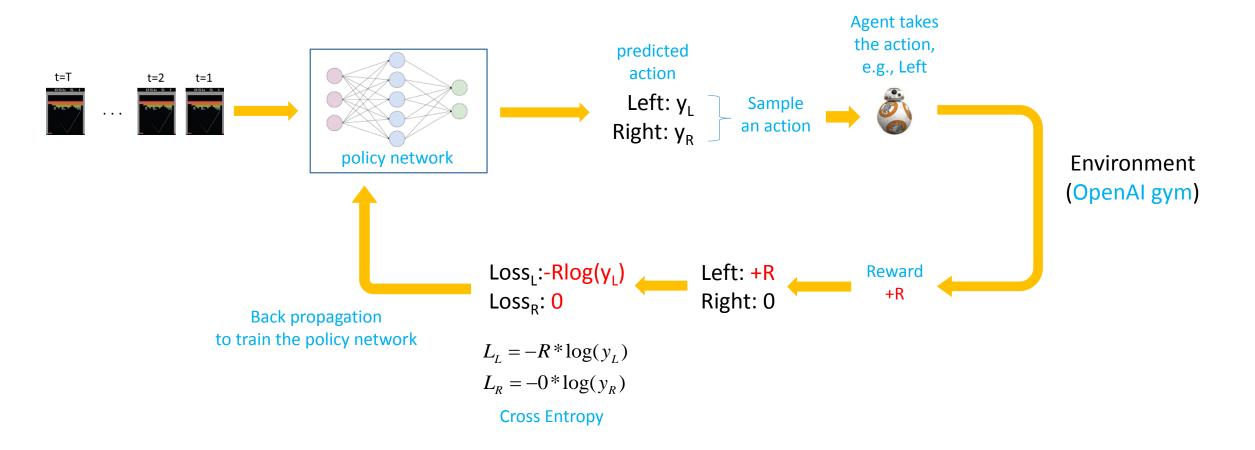
Loss function for Policy Network (PN): Cross Entropy

□ First, let's see the overall operation of policy gradient method



Loss function for Policy Network (PN): Derivation

Let's generalize the loss function by introducing Reward.

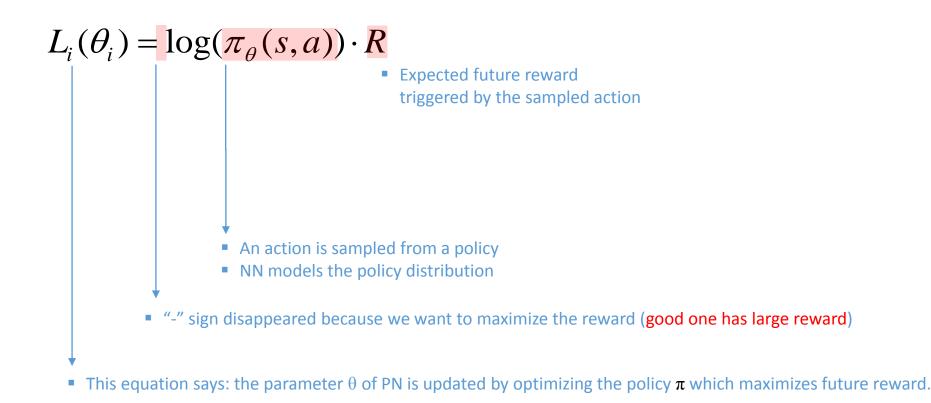


Loss function for Policy Network (PN): Derivation - cont

□ PG aims to obtain an optimum policy which maximizes the future reward.

□ In the previous slide, we want to train PN in a way that

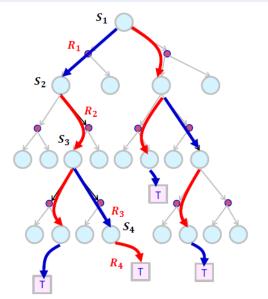
- When an agent follows the policy given by the outcome of the PN, it expects high future reward.

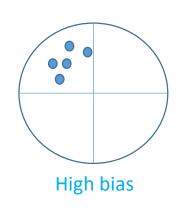


Q learning vs Policy gradient

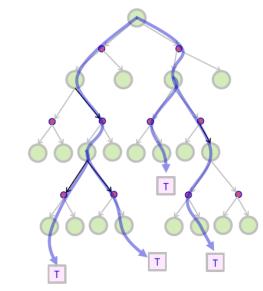
Q learning	Policy gradient
 Learning Q(s,a): modeling (Reward) values of actions Value based approach: learning Q values 	 Learning π(a): modeling probability of actions Policy based approach: learning policy directly
 Deterministic policies: e.g., cannot model rock-paper-scissors game 	 Stochastic policies e.g., can model rock-paper-scissors game
 Off-policy: an action is taken greedily Greed search to calculate Q(s,a) and then determine a policy 	 On-policy: an action is taken with a policy Following a trajectory created by a policy and update it with given reward at the end.
 Learning update occurred step-by-step (bootstrapping) 	 Learning update occurred episode-by-episode

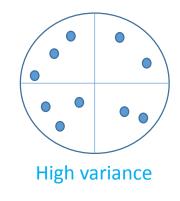
- Learning update occurred step-by-step (bootstrapping)
- Low variance but high bias





High variance but low bias -





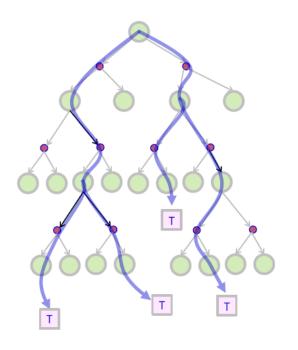
Action Critic (AC)

Action critic = Q learning + Policy gradient

□ It aims to deal with following two problems in PG.

- 1) PG uses episode-by-episode learning update, which disables on-line learning.
- 2) PG tends to produce a policy with high variance.

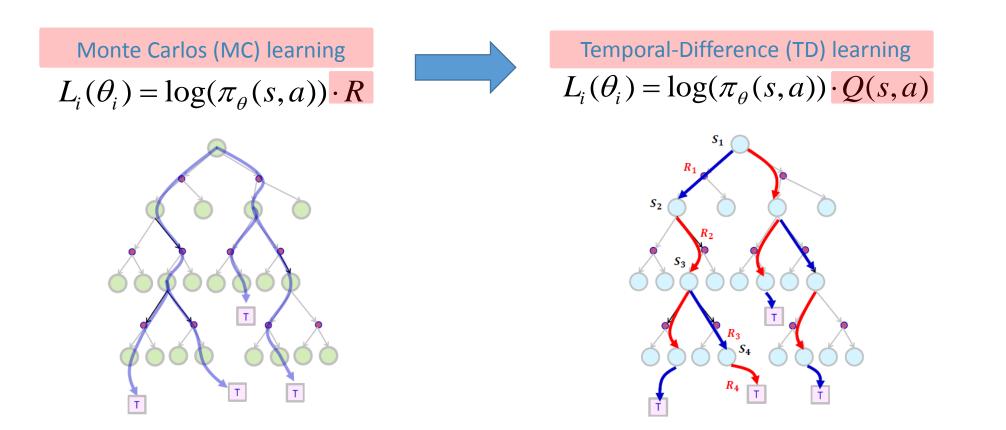
Policy Gradient approach Monte Carlos (MC) Learning Episode-by-episode



1) Learning update step-by-step: Policy gradient theorem

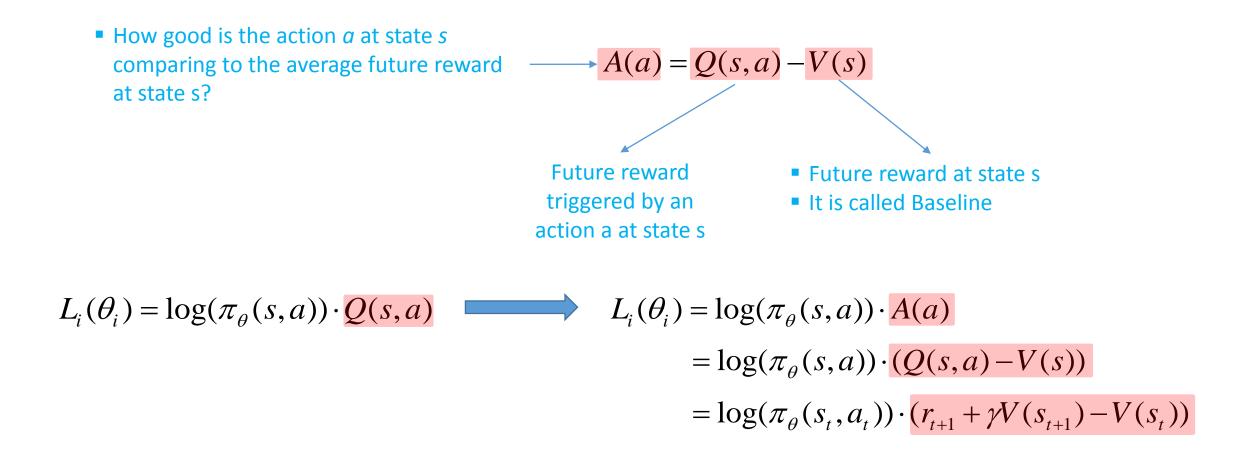
□ For the first problem, let's change the reward function *R* to Q(s, a) function and so learning update can be done step-by-step, which enables on-line learning.

- Proof in "policy gradient methods for reinforcement learning with function approximation"



2) Reducing variance

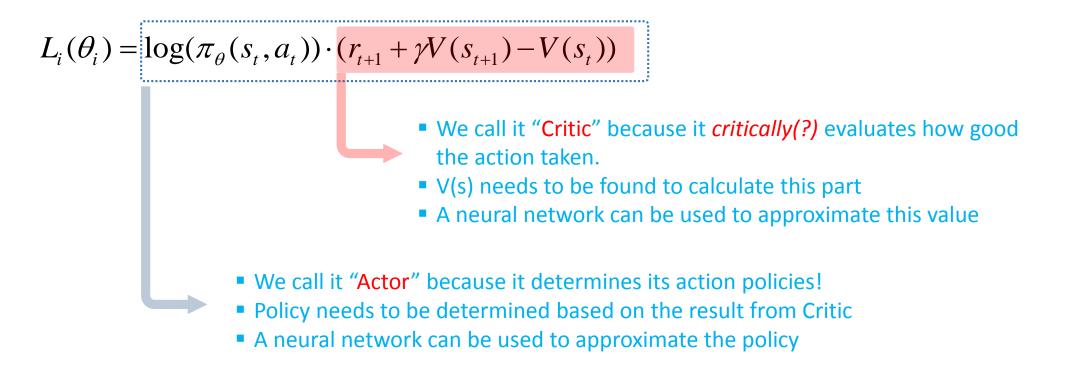
For the second problem, let's introduce "advantage" which replaces "Q function"
 Well, it is a kind of normalization process if you see its definition below.



Actor-Critic

□ Actor-Critic is a policy gradient approach which updates a policy in each step

- 1) Actor determines a policy
- 2) Critic determines a value function for future reward



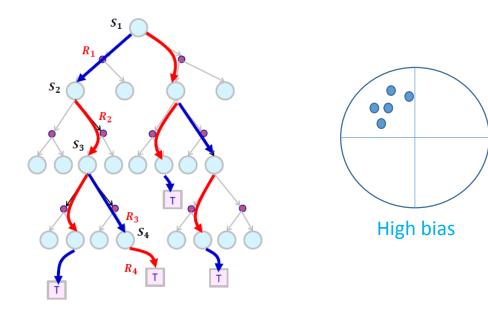
A3C: Asynchronous Advantage Actor-Critic

Two problems in Actor Critic

High bias due to every one step update

Exploration issue

- DQN uses e-greedy approach to handle exploration issue.
- However, policy gradient approach; Actor Critic does not have the mechanism.
- Stochastic behavior of a policy function can handle the exploration issue partially.



1) High Bias every one step update

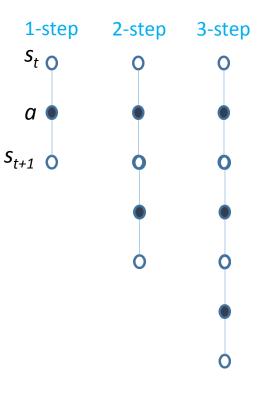
A3C introduces multi step updates to handle the problem
 There can be several variations!

$$L(\theta) = \log(\pi_{\theta}(s_{t}, a_{t})) \cdot (r_{t+1} + \gamma V(s_{t+1}) - V(s_{t}))$$

$$L(\theta) = \log(\pi_{\theta}(s_{t}, a_{t})) \cdot (r_{t+1} + r_{t+2} + \gamma V(s_{t+2}) - V(s_{t}))$$

$$L(\theta) = \log(\pi_{\theta}(s_{t}, a_{t})) \cdot (r_{t+1} + r_{t+2} + r_{t+3} + \gamma V(s_{t+3}) - V(s_{t}))$$

$$L(\theta) = \log(\pi_{\theta}(s_{t}, a_{t})) \cdot (r_{t+1} + r_{t+2} + r_{t+3} + \gamma V(s_{t+3}) - V(s_{t}))$$
$$+ \log(\pi_{\theta}(s_{t}, a_{t})) \cdot (r_{t+2} + r_{t+3} + \gamma V(s_{t+3}) - V(s_{t}))$$
$$+ \log(\pi_{\theta}(s_{t}, a_{t})) \cdot (r_{t+3} + \gamma V(s_{t+3}) - V(s_{t}))$$



□ A3C includes "entropy of the policy π " to the loss function in order to improve exploration by discouraging premature convergence to suboptimal deterministic policies.

 $L(\theta) = \log(\pi_{\theta}(s_t, a_t)) \cdot (r_{t+1} + \gamma V(s_{t+1}) - V(s_t)) + \beta H \pi_{\theta}(s_t, a_t)$

 This term defines the probability distribution of actions at each state

- Entropy regularization term
- This term tries to uniformize the probability distribution of actions defined in the first term.
 - Entropy is maximized when all actions from the policy π are same.
 - It aims to occur all action with equal probability (exploration)

Backup Slides

Cross Entropy

Do you remember the Cross Entropy which is used to calculate the loss in CNN?

- prediction: predicted label which is the output from the previous layer
 - e.g., [0.1, 0.2, 0.7]
- label: true label, one-hot encoded
 - e.g., [0,0,1]

$$H(p,q) = -\sum_{x} p(x) \log q(\hat{x}) = -\log q(\hat{x}_{x\neq 0})$$

 $-0*\log(0.1)-0*\log(0.2)-1*\log(0.7) = 0.375$

Good one has small error

 $-0*\log(0.3)-0*\log(0.3)-1*\log(0.4) = 0.916$