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Practical Machine Learning

Dr. Suyong Eum

Lecture 14

Reinforcement Learning (RL): Deep Q Networks (DQN) 

and Policy Gradient (PG: AC/A3C)
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Reinforcement 
Learning

Supervised 
Learning

Unsupervised 
Learning

 LCR (week2)
 SVM (week5)
 CNN (week8)
 RNN (week10)

 GMM (week3)
 HMM (week4)
 PCA (week6)
 VAE (week12)
 GAN (week12)

 DQN (week14)
 PG (week14)

Where we are
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You are going to learn

 What Reinforcement Learning (RL) is
 Deep Q Network (DQN)
 Policy Gradient (PG)

- Actor Critic (AC)
- Asynchronous Advantage Actor Critic (A3C)
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Big picture: Reinforcement Learning (RL)

 Learning how to take actions in an environment so as to maximize 
future cumulative reward.

Action

Agent

State

Environment

(E, W, S, N)

Reward 
cheese

Brain of 
the mice

maze

location
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Reinforcement Learning (RL) has been around for a long time

 Reinforcement Learning (RL) has been used for many applications where an 
agent interacts with an environment while trying to learn optimal sequence of 
decisions – optimal control problems:

- Manufacturing, e.g., robot arms to assemble cars.
- Financial strategy, e.g., buy or sell to maximize the value of the portfolio
- Inventory management or resource management
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Shed new light on RL with neural networks 

2013

2015 2016
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Shed new light on RL with neural networks – cont. 

model

model

model

model

model

Model?

How to model the environment?
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How good is the reinforcement learning algorithm?

• Human-level control through deep reinforcement learning, Feb. 26, 2015, Nature
• https://deepmind.com/applied/deepmind-for-google/
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Terminology 
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State (S)

1) State (S)
2) Reward (R)

- Discount factor (γ)

3) Policy (π)
- Action (A)

4) Environment
- Transit Probability (P)

 A representation of environment that an agent 
recognizes.

 A agent takes an action given state
 E.g., pixel information as shown below
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 When an agent takes an action, it considers 
two types of rewards

1. Immediate reward
2. Future accumulated reward

 Reward in a different time step may need to 
be treated differently: γ[0,1]

. . .

time

R γR γ2R γnR

Reward (R) and Discount factor (γ)

1) State (S)
2) Reward (R)

- Discount factor (γ)

3) Policy (π)
- Action (A)

4) Environment
- Transit Probability (P)
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 Agent has a set of actions given state
 Policies π is a distribution over actions given 

states: probability of action a given state s
- Deterministic policy: a = π(s)
- Stochastic policy: π(a|s)

s]S|aP[As)|(a tt 

S1 action1 

action2

Policy (π) and Action (A)

1) State (S)
2) Reward (R)

- Discount factor (γ)

3) Policy (π)
- Action (A)

4) Environment
- Transit Probability (P)
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 Due to uncertainty of environment, an action 
taken by an agent does not guarantee to a 
certain state.

 The uncertainty is represented as transition 
probability.

a]A s,S|s'[SPP tt1tss'  

aa

S1

S4

S5

action1 S2

S3

action2

)|( sa
a

ss'P

Environment

1) State (S)
2) Reward (R)

- Discount factor (γ)

3) Policy (π)
- Action (A)

4) Environment
- Transit Probability (P)
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Reinforcement Learning (RL) process

Action

State

Environment

Reward hops, cheese

Locationst

at

st+1

rt+1

Location



Policy

State
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How to find the optimum policy?: two functions as an signalpost

1) State value function: Vπ(s)
- Expected reward when starting in state s and following policy π thereafter.
- The mouse needs to know the value of next state before making an action.

2) Action value function: Qπ(s,a)
- Expected reward when taking action a in state s and following policy π thereafter.
- The mouse just needs to take an action based on Q value. 

Vπ(s)=10

Vπ(s)=7
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How to find the Q(s,a) function?: Q learning

)','(1 asQ

)','(2 asQ

)','(3 asQ

)','(max),(
'

a

s asQrasQ
a

 

Immediate 
reward

Discounted reward 
of successor state
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Q learning: example
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Q learning: Q(s,a) based on Q table

https://hunkim.github.io/ml/RL/rl03.pdf

 One box represents a state and actions which can be taken by an agent (N, E, S, W)
 Initial Q values at individual states are set to zero 

Goal
(r=+1)
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 Agent takes an action at each state based on value of Q(s,a).
 Assuming that an agent is at the next to the goal and takes an action to E (East).

Goal
(r=+1)

https://hunkim.github.io/ml/RL/rl03.pdf

Q learning: Q(s,a) based on Q table
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 Q(s, E) is set to one:  1: (immediate reward) + 0: Q(s’, a’)

Goal
(r=+1)

1

Q(s,a) = 1 : (immediate reward) + 0 : Q(s’,a’)
https://hunkim.github.io/ml/RL/rl03.pdf

Q learning: Q(s,a) based on Q table
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 Again assume that an agent ends up to the state below and takes an action to E
 Then, Q(s, E) is set to one: 0 (immediate reward) + 1 Q(s’, a’)

Goal
(r=+1)

1

https://hunkim.github.io/ml/RL/rl03.pdf

Q learning: Q(s,a) based on Q table
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 Again assume that an agent ends up to the state below and takes an action to E
 Then, Q(s, E) is set to one: 0 (immediate reward) + 1 Q(s’, a’)

Goal
(r=+1)

1

Q(s,a) = 0 : (immediate reward) + 1 : Q(s’,a’)

1

https://hunkim.github.io/ml/RL/rl03.pdf

Q learning: Q(s,a) based on Q table
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 In the same way, Q table can be built as follows:

Goal
(r=+1)

11

1
1

1

1

11

https://hunkim.github.io/ml/RL/rl03.pdf

Q learning: Q(s,a) based on Q table
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Q learning: Exploit vs Exploration

Machine Learning, T. Mitchell, McGraw Hill p375

e = 0.1

if rand < e:      10% random decision
action = random

else:
action = argmax(Q(s,a))

for i in range (1000)

e = 0.1 / (i+1)

if rand < e:
action = random

else:
action = argmax(Q(s,a))

E-greedy policy Decaying E-greedy policy

 Random to deterministic 
decision as iteration goes on

 90% deterministic decision
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 The route to the goal is not an optimum.
 How to select a different route occasionally?

Goal
(r=+1)

11

1
1

1

1

11

Q learning: Exploit vs Exploration
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 The route to the goal is not an optimum.
 How to select a different route occasionally?

Goal
(r=+1)

11

1
1

1

1

11

Q learning: Exploit vs Exploration

1
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Q-learning: Discounted reward γ

 Q value does not tell which path is better

Goal
(r=+1)

11

1
1

1

1

11

1

https://hunkim.github.io/ml/RL/rl04.pdf

Q(s,a) = 0 : (immediate reward) + 1 : Q(s’,a’)



28

Q-learning: Discounted reward γ

 Q value does not tell which path is better
 Let’s introduce discounted reward γ=0.9 to the equation

Goal
(r=+1)

1

Q(s,a) = r + γ Q(s’,a’)= 1 + 0.9 x 0 = 1

https://hunkim.github.io/ml/RL/rl04.pdf
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Q-learning: Discounted reward γ

 Q value does not tell which path is better
 Let’s introduce discounted reward γ=0.9 to the equation

Goal
(r=+1)

1

Q(s,a) = r + γ Q(s’,a’)= 0 + 0.9 x 1 = 0.9

0.9

https://hunkim.github.io/ml/RL/rl04.pdf
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Q-learning: Discounted reward γ

 Q value does not tell which path is better
 Let’s introduce discounted reward γ=0.9 to the equation

Goal
(r=+1)

1

Q(s,a) = r + γ Q(s’,a’)= 0 + 0.9 x 0.9 = 0.81

0.9

0.81

https://hunkim.github.io/ml/RL/rl04.pdf
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Q-learning: Discounted reward γ

 Q value does not tell which path is better
 Let’s introduce discounted reward γ=0.9 to the equation

Goal
(r=+1)

1

Q(s,a) = r + γ Q(s’,a’)= 0 + 0.9 x 0.81 = 0.729

0.9

0.81

0.729

https://hunkim.github.io/ml/RL/rl04.pdf
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Q-learning: Discounted reward γ

 Q value does not tell which path is better
 Let’s introduce discounted reward γ=0.9 to the equation

Goal
(r=+1)

1

Q(s,a) = r + γ Q(s’,a’)= 0 + 0.9 x 1 = 0.9

0.9

0.81

0.729
0.9

https://hunkim.github.io/ml/RL/rl04.pdf
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Q-learning: Discounted reward γ

 Q value does not tell which path is better
 Let’s introduce discounted reward γ=0.9 to the equation

Goal
(r=+1)

1

Q(s,a) = r + γ Q(s’,a’)= 0 + 0.9 x 1 = 0.9

0.9

0.81

0.729
0.9

https://hunkim.github.io/ml/RL/rl04.pdf
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Q learning algorithm

For each (s, a) pair, initialize table entry 𝑄(s, a) to zero.
Observe the current state s
Do forever:

 Select an action a and execute it
 Receive immediate reward r
 Observe the new state s’
 Update the table entry for 𝑄(s, a) as follows:

 s  s’

)','(ˆmax),(ˆ
'

asQrasQ
a



Exploit & Exploration

Discounted reward

Machine Learning, T. Mitchell, McGraw Hill p375
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Deep Q-Networks (DQN)



36

Q learning problem

 Q (s,a) needs to be computed for every state(s)-action(a) pair.
- If the problem size is small, we can handle it using Q table

 When state space is huge: computationally infeasible for entire state space
- Backgammon: 1020 states
- Computer Go: 10170 states
- Automatic driving: continuous state space

 Too many states to store in memory and also too slow to learn state space

Backgammon Go
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Deep Q-Network (DQN)

 In 2013, a team of DeepMind (AlphaGo) proposed convolutional neural 
networks as an approximation of the Q(s, a) function.

 Then, it was named as Deep Q-networks (DQN)

),();,(ˆ asQasQ  

Hyper parameters + neural network parameters 

DQN
(θ)

DQN
(θ)

state

action
);,(ˆ asQ state

);,(ˆ
1 asQ

);,(ˆ masQ

. . .
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Deep Q-Network architecture (2013)
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(e.g., Single frame cannot tell 

the movement of a ball)
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Preprocessing: 
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Deep Q-Network architecture (2015)
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Loss function of the DQN

Target 
future reward

Expected 
future reward

 Sample data (s,a,r,s’) randomly drawn from data pool U(D)
 Experience Replay

 Two different neural networks
 Fixed Q-target

state s

state s’

action a + reward r

state s

state s’
DQN
(θ)

);','(ˆ
1 asQ

);','(ˆ masQ
. . . );','(ˆmax

'
asQ

a

DQN
(θ)

);,(ˆ
1 asQ

);,(ˆ masQ

. . .
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Deep Q-Network architecture (2013 & 2015)

 Neural networks were used previously for RL

- Temporal Difference Learning and TD-Gammon (1992)

- Deep Auto-Encoder Neural Networks in RL (2010)

 However, they were not successful due to oscillates or divergence of neural nets

 How does DQN handle this problem?
1) Experience replay
2) Fixed Q-targets
3) Go deep
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1) Experience replay

 Consecutive data frames are highly correlated

 Experience replay aims to remove the correlation between data samples

t=1t=2

. . .

t=T

Relay 
Memory

Random batch 
data from Relay 

memory

s1, a1, r2, s2

s2, a2, r3, s3

s3, a3, r4, s4

. . .

st, at, rt+1, st+1
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2) Fixed Q-target

 Originally the target future reward and the expected future reward are sharing the 
same neural net. 

Two different 
neural networks

state s

state s’

);,(ˆ
1 asQ

);,(ˆ masQ

. . .

);,(ˆ
1 asQ

);,(ˆ masQ

. . .

);,(ˆ
1 asQ

);,(ˆ masQ

. . .

state s/s’

Same neural 
networks

Selection Q which 
has the maximum

Selection Q 
given s  and a

Copy the network 
parameters

Every time unit

(2013) (2015)
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How effect they are?

2015 DQN

Human-level control through deep reinforcement learning, Feb. 26, 2015, Nature
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Algorithm (DQN 2015)

Data pool size and initialization

Weight of 1st NN initialization
Weight of 2nd NN initialization

Preprocessing, e.g., RGB to gray

Action selection using E-greedy: off-policy

Experience replay

Target future reward is obtained from NN (θ-) 

Replace NN (θ-) with NN (θ) every C steps

Update NN (θ) without changing NN (θ-)

Human-level control through deep reinforcement learning, Feb. 26, 2015, Nature
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Policy Gradient (PG)



47

Difference between DQN and Policy Gradient

 When we can approximate Q function for all states and action pairs, we can obtain 
the optimal π* by following way:

),(maxarg)(* asQs
a



 Policy Gradient (PG) directly optimizes the policy function π without obtaining Q 
function.

- Similar to DQN, PG can also use a neural network (Policy Network): the output is the probability 
of each action at given state.

: optimal policy
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Loss function for Policy Network (PN): Cross Entropy

 First, let’s see the overall operation of policy gradient method

Left: 0.8
Right: 0.2

predicted 
action

Sample 
an action

Agent takes 
the action, 
e.g., Left

Reward
+1

Environment 
(OpenAI gym)

Left: +1
Right: 0

Assuming we 
won the game 

due to the action 
taken previously, 

e.g., loss: -1

)8.0log(*1LL

LossL:-log(0.8)
LossR: 0

)2.0log(*0RL

Cross Entropy

Back propagation
to train the policy network

policy network
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Loss function for Policy Network (PN): Derivation

 Let’s generalize the loss function by introducing Reward.

Left: yL

Right: yR

predicted 
action

Agent takes 
the action, 
e.g., Left

Reward
+R

Environment 
(OpenAI gym)

Left: +R
Right: 0

)log(* LL yRL 

LossL:-Rlog(yL)
LossR: 0

)log(*0 RR yL 

Cross Entropy

Back propagation
to train the policy network

policy network

Sample 
an action
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 PG aims to obtain an optimum policy which maximizes the future reward.

 In the previous slide, we want to train PN in a way that
- When an agent follows the policy given by the outcome of the PN, it expects high future reward.

RasL ii  )),(log()( 

 An action is sampled from a policy
 NN models the policy distribution

 Expected future reward 
triggered by the sampled action

 “-” sign disappeared because we want to maximize the reward (good one has large reward) 

 This equation says: the parameter θ of PN is updated by optimizing the policy π which maximizes future reward.

Loss function for Policy Network (PN): Derivation - cont
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Q learning vs Policy gradient

Q learning Policy gradient

 Learning Q(s,a): modeling (Reward) values of actions
- Value based approach: learning Q values

 Learning π(a): modeling probability of actions
- Policy based approach: learning policy directly

 Deterministic policies: 
- e.g., cannot model rock-paper-scissors game

 Stochastic policies
- e.g., can model rock-paper-scissors game

 Off-policy: an action is taken greedily 
- Greed search to calculate Q(s,a) and then determine a 

policy

 On-policy: an action is taken with a policy
- Following a trajectory created by a policy and update 

it with given reward at the end.

 Learning update occurred step-by-step (bootstrapping)
- Low variance but high bias

 Learning update occurred episode-by-episode
- High variance but low bias

High bias High variance
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Action Critic (AC)
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Action critic = Q learning + Policy gradient

 It aims to deal with following two problems in PG.
1) PG uses episode-by-episode learning update, which disables on-line learning.
2) PG tends to produce a policy with high variance.

Policy Gradient approach
Monte Carlos (MC) Learning

Episode-by-episode
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1) Learning update step-by-step: Policy gradient theorem

 For the first problem, let’s change the reward function R to Q(s, a) function and so 
learning update can be done step-by-step, which enables on-line learning.

- Proof in “policy gradient methods for reinforcement learning with function approximation”

RasL ii  )),(log()( 

Monte Carlos (MC) learning Temporal-Difference (TD) learning

),()),(log()( asQasL ii  

https://dl.acm.org/citation.cfm?id=3009806
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2) Reducing variance

 For the second problem, let’s introduce “advantage” which replaces “Q function”
 Well, it is a kind of normalization process if you see its definition below.

),()),(log()( asQasL ii   )()),(log()( aAasL ii  

)(),()( sVasQaA 

Future reward 
triggered by an 

action a at state s

 Future reward at state s
 It is called Baseline

 How good is the action a at state s
comparing to the average future reward 
at state s?

))(),(()),(log( sVasQas  

))()(()),(log( 11 ttttt sVsVras   
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Actor-Critic

 Actor-Critic is a policy gradient approach which updates a policy in each step
1) Actor determines a policy
2) Critic determines a value function for future reward

))()(()),(log()( 11 tttttii sVsVrasL    

 We call it “Critic” because it critically(?) evaluates how good 
the action taken.

 V(s) needs to be found to calculate this part
 A neural network can be used to approximate this value

 We call it “Actor” because it determines its action policies!
 Policy needs to be determined based on the result from Critic
 A neural network can be used to approximate the policy
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A3C: Asynchronous Advantage Actor-Critic



58

Two problems in Actor Critic

 High bias due to every one step update
 Exploration issue

- DQN uses e-greedy approach to handle exploration issue. 
- However, policy gradient approach; Actor Critic does not have the mechanism.
- Stochastic behavior of a policy function can handle the exploration issue partially.

High bias
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1) High Bias every one step update

 A3C introduces multi step updates to handle the problem
 There can be several variations!

))()(()),(log()( 11 ttttt sVsVrasL    
st

a
))()(()),(log()( 221 tttttt sVsVrrasL    

))()(()),(log()( 3321 ttttttt sVsVrrrasL     st+1

1-step 2-step 3-step

))()(()),(log()( 3321 ttttttt sVsVrrrasL    

))()(()),(log( 332 tttttt sVsVrras   

))()(()),(log( 33 ttttt sVsVras   
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2) Exploration issue

 A3C includes “entropy of the policy π” to the loss function in order to improve 
exploration by discouraging premature convergence to suboptimal deterministic 
policies.

),())()(()),(log()( 11 ttttttt asHsVsVrasL    

 Entropy regularization term
 This term tries to uniformize the probability 

distribution of actions defined in the first term.
- Entropy is maximized when all actions 

from the policy π are same.
- It aims to occur all action with equal 

probability (exploration)

 This term defines the probability 
distribution of actions at each state
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Backup Slides
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Cross Entropy

 Do you remember the Cross Entropy which is used to calculate the loss in CNN?
- prediction: predicted label which is the output from the previous layer

- e.g., [0.1, 0.2, 0.7]
- label: true label, one-hot encoded

- e.g., [0,0,1]

)ˆ(log)ˆ(log)(),( 0  x

x

xqxqxpqpH

CNN
0.1
0.2
0.7

prediction

0
0
1

label

CNN 0.3
0.3
0.4

prediction

0
0
1

label

-0*log(0.1)-0*log(0.2)-1*log(0.7) = 0.375 -0*log(0.3)-0*log(0.3)-1*log(0.4) = 0.916

predictionlabel

Good one has small error


