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Practical Machine Learning

Dr. Suyong Eum

Lecture 12

Generative Models: Variational Auto Encoder (VAE)

and Generative Adversarial Networks (GAN)
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Reinforcement 
Learning

Supervised 
Learning

Unsupervised 
Learning

 LCR (week2)
 SVM (week5)
 CNN (week8)
 RNN (week10)

 GMM (week3)
 HMM (week4)
 PCA (week6)
 VAE (week12)
 GAN (week12)

 DQN (week14)
 PG (week14)

Where we are
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 The basic concept of generative models

 Two generative models:
1) Variational Auto Encoder (VAE)
2) Generative Adversarial Networks (GAN)

 Some applications you may be interested

You are going to learn
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What are Generative models?

 There are two types of models:
1) Discriminative models
2) Generative models

Determinative model, e.g., SVM Generative model, e.g, GMM
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 Literally speaking, a sample can be generated from generative models.
- Of course, the model needs to be trained in advance to generate such a 

sample which you are interested.

Each data point
has 64 dimension

Project the data points in
2 dimension

e.g., GMM

Basic operation
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 Literally speaking, a sample can be generated from generative models.
- Of course, the model needs to be trained in advance to generate such a 

sample which you are interested.

Each data point
has 64 dimension

Project the data point in
2 dimension

8

8

64 dimensions

a sample 
can be 

generated

 We can generate a new image which 
corresponds to the sample.

 It is NOT one of training data points!

e.g., GMM

Basic operation
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Variational AutoEncoder (VAE)



8

Idea of VAE

Each data point
has 64 dimension

Project the data point in
2 dimension

8

8

64 dimensions

a sample 
can be 

generated

 We can generate a new image which 
corresponds to the sample.

 It is NOT one of training data points!

 To build a method which does the following procedure systematically.
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Idea of VAE

 Assuming that there is a complex model parameterized with “θ”
 The model generates data {x(1), x(2), … , x(N)} given a latent variable “z”: pθ(x|z) 

 Also, the model maps data set into the latent space:  pθ(z|x) 

)|x( )((i) izp

Data space (x)

)x|( (i))(izpIt is intractable

Data space (x)

a sample

Latent space (z)
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Idea of VAE

 This Intractability is well known, which can be handled with 1) Markov Chain Monte Carlos (MCMC) 
and 2) Variational Inference (VI).

 VAE uses the idea of Variational Inference and so the term “Variational” is in the name.

)|x( )((i) izp

Data space (x)

)x|( (i))(izpIt is intractable

Data space (x)

a sample

Latent space (z)
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 Auto Encoder is a neural network which reproduces its input

Encoder Decoder

)|x( )((i) izp

x x

Data space (x) Data space (x)Latent space (z)

)x|( (i))(izp

Approximate the function “p” using a neural network
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 Auto Encoder is a neural network which reproduces its input

Encoder Decoder

)|x( )((i) izp

x x

Data space (x) Data space (x)Latent space (z)

)x|( (i))(izp

)x|( (i))(izq

approximation

 Assuming qφ() as Gaussian distribution

Approximate the function “p” using a neural network
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 Auto Encoder is a neural network which reproduces its input

2 dimensions

x x

Data space (x) Data space (x)Latent space (z)

Encoder Decoder

)|x( )((i) izp)x|( (i))(izq

Approximate the function “p” using a neural network
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VAE model

z

. . .

. . .

1x1z

2z

2

1z

2

2z

1z

2z

x

8

8

64x

2

64x

2

1x

pixel1

pixel2

pixel64

pixel63

8

8

x
. . .

pixel1

pixel2

pixel64

pixel63

sampling

},{ bw

},{ bw

sampling

qφ(z|x) ~ N(μ, σ2)

pθ(x|z) ~ N(μ, σ2) or Bernoulli

pθ(z) ~N(0, 1)
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 How can we train the network to obtain the parameter φ and θ ?

- To train the neural network, a loss function is necessary. Then, the parameter “φ and θ” can be 
calculated through a backpropagation. 

 Let’s derive the loss function from the likelihood function pθ(x)

)x(log)x,,x(log (i)
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(i)(N)(1) )x(log)x,,x(  

))x|(||)x|(()x;,()x(log (i)(i)(i)(i) zpzqDLp KL   

 Since DKL ≥0, “L” is the lower bound of the likelihood 
function, which is called “ELBO” (Evidence Lower Bound)

A loss function for AutoEncoder

(log) likelihood 

Likelihood function showing the probability 
that given batch data set occur with the 
parameter θ in the neural network.

 Kullback-Leibnitz divergence showing how difference 
between two posterior distributions: true posterior 
p(z|x) and its approximate posterior q(z|x)

 This term is intractable because of p(z|x).
 However, we know DKL ≥0.
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Proof: If you are interested…
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 By maximizing “L”, we can maximize the likelihood function as well
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A loss function for AutoEncoder
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 qφ(z|x) ~ N(μ, σ2)
 pθ(z) ~ N(0, I)
 J: dimension of z

Auto-Encoding Variational Bayes (appendix B: 
derivation) https://arxiv.org/pdf/1312.6114.pdf

 It can be computed in a closed form
 pθ(x|z) ~ N(μ, σ2) or Bernoulli
 D: dimension of x

|ˆ|min xx 

A loss function for AutoEncoder

 By maximizing “L”, we can maximize the likelihood function as well,
 In other words, the most likely model (pθ and pφ), which generates the observed data, 

can be obtained by maximizing the function below. 

https://arxiv.org/pdf/1312.6114.pdf
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Variational Auto Encoder (VAE): summary

z1

z2

 A generative model based on a neural network (AutoEncoder)
 Its loss function is derived based on variational inference approach (Variational)
 The loss function calculates the error used to train Auto Encoder through backpropagation

- That is the reason why it is called “Variational AutoEncoder” (VAE).
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Generative Adversarial Networks (GAN)

https://arxiv.org/pdf/1701.00160.pdf
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What is the motivation of GAN instead of VAE? 

 In VAE, we design a latent space which maps to a data space.
 Then, a latent variable in the space is used to generate a data sample.
 However, actually we are interested in not the latent space but a sample itself.
 Then, why do we generate samples directly without the latent space estimation?

https://arxiv.org/pdf/1701.00160.pdf
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How does GAN work? 

Generator
(Counterfeiter)

Discriminator
(Police)

 GAN: Generative Adversarial Network
 Based on game theory to train the system which directly generates a sample
 Adversarial: 

‘GAN framework can naturally be analyzed with the tools of game theory, we call GANs 

“adversarial”.’    - Ian Goodfellow

Real or Fake

Making a fake money

https://arxiv.org/pdf/1701.00160.pdf
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)))]((1[log()]([log),(maxmin )(~)(~ zGDExDEGDV zpzxpx
DG zdata



Theory: formulation of an optimization problem

 Expectation that discriminator (D) tells 
real is real (D successes)

 Training discriminator to maximize it

 Expectation that D tells fake is real
(D fails)

 Training generator to minimize a fake

notation description

x ~ pdata(x) Real data sample

z ~ pz(z) A random number from N(0, 1)

G(z) Fake data sample

D(x)=1 Probability of discriminator (D) telling that given real data “x” is real

D(G(z))=0 Probability of discriminator (D) telling that given fake data “G(z)” is fake

1 – D(G(z)) Probability of discriminator (D) telling that given fake data “G(z)” is real



24

)))]((1[log()]([log),(maxmin )(~)(~ zGDExDEGDV zpzxpx
DG zdata



Theory: illustration

Real data 
dist.

Fake data 
dist.Discriminator

 Generator keeps trained to generate a fake one similar to real and so finally Discriminator 
cannot tell a fake from a real => its probability becomes 0.5.

0.5

https://arxiv.org/abs/1406.2661
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Theory: its global optimal solution pg=pdata
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Theory: its global optimal solution pg=pdata

 With the optimum value of D*, lower bound of V(G) is

)))]((1[log()]([log),(maxmin )(~)(~ zGDExDEGDV zpzxpx
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)||(2)4log( gdata ppJSD

 JSD: Jensen Shannon divergence
- A method of measuring the similarity between two probability distribution.
- 0 ≤ JSD(p|q) ≤1

Backup 
slide

This is the minimum value of V(G) when JSD=0 (pg=pdata)
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Generative Adversarial Networks (GAN): summary

 Given the system below, we train it based on the objective function.  
 The objective function is derived based on game theory.

- Generator tries to make a real like fake data to deceive the discriminator
- Discriminator tries not to be deceived by the generator

 In this manner, generator learns how to make a sample close to real data.
 It is about how to define the objective function and whether it converges to an 

optimum solution.
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Applications
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Explosive growth of the popularity of GAN

https://deephunt.in/the-gan-zoo-79597dc8c347
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High resolution image generation

 https://arxiv.org/pdf/1703.10717.pdf (BGAN)

https://arxiv.org/pdf/1703.10717.pdf
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Text to image

 https://arxiv.org/pdf/1710.10916.pdf (StackGAN)

https://arxiv.org/pdf/1710.10916.pdf
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Style transfer

 https://github.com/junyanz/CycleGAN

http://bamos.github.io/2016/08/09/deep-completion/
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Image Completion with Deep Learning in TensorFlow

 http://bamos.github.io/2016/08/09/deep-completion/

http://bamos.github.io/2016/08/09/deep-completion/
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Image2Vec

 https://arxiv.org/pdf/1511.06434.pdf

A B

C D

A->C = B->D
C-A = D-B
C-A+B=D

+ =

https://arxiv.org/pdf/1511.06434.pdf
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Deep Feature Interpolation 

 https://arxiv.org/pdf/1611.05507.pdf

https://arxiv.org/pdf/1611.05507.pdf
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Backup Slides
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V(G) when D is fixed 
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