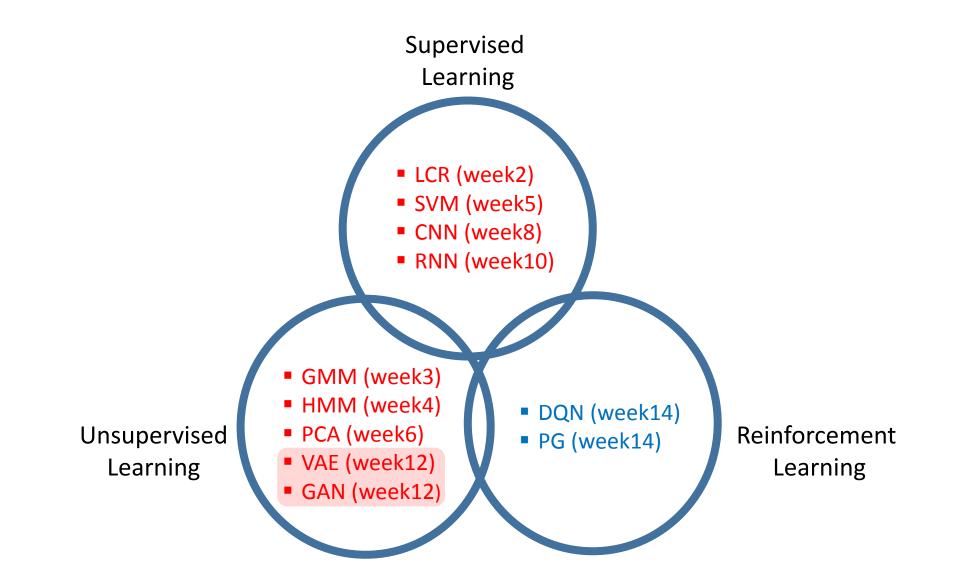


Practical Machine Learning

Lecture 12 Generative Models: Variational Auto Encoder (VAE) and Generative Adversarial Networks (GAN)

Dr. Suyong Eum

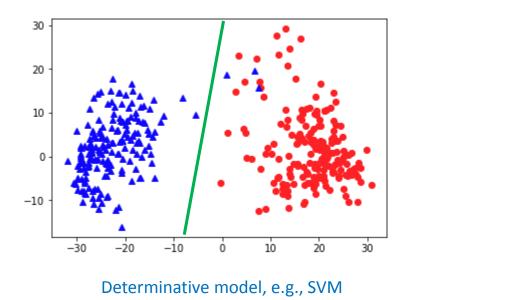


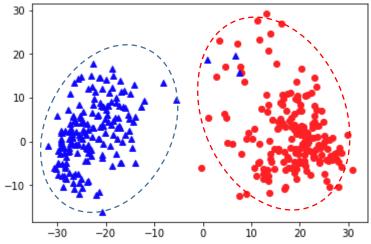
You are going to learn

- □ The basic concept of generative models
- **Two generative models:**
 - 1) Variational Auto Encoder (VAE)
 - 2) Generative Adversarial Networks (GAN)
- □ Some applications you may be interested

What are Generative models?

- □ There are two types of models:
 - 1) Discriminative models
 - 2) Generative models





Generative model, e.g, GMM

Basic operation

□ Literally speaking, a sample can be generated from generative models.

- Of course, the model needs to be trained in advance to generate such a sample which you are interested.



e.g., GMM

Basic operation

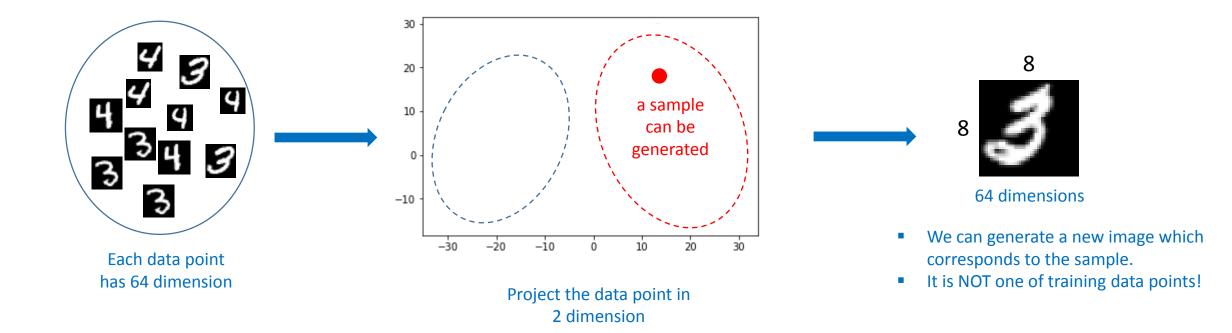
- Literally speaking, a sample can be generated from generative models.
 - Of course, the model needs to be trained in advance to generate such a sample which you are interested.



Variational AutoEncoder (VAE)

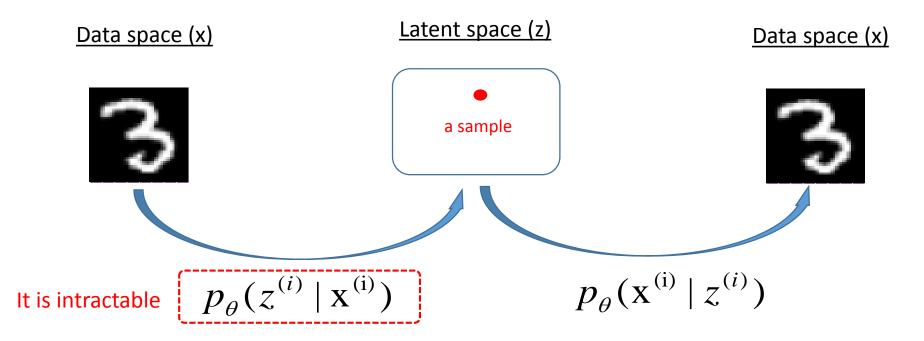
Idea of VAE

□ To build a method which does the following procedure systematically.



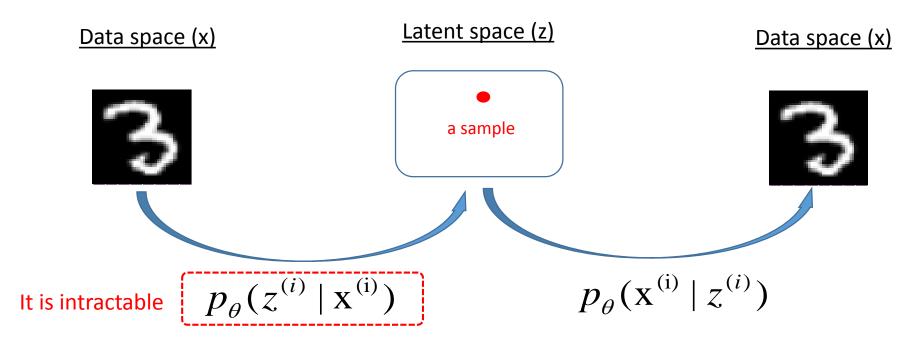
Idea of VAE

- $\hfill\square$ Assuming that there is a complex model parameterized with " θ "
- **D** The model generates data $\{x^{(1)}, x^{(2)}, \dots, x^{(N)}\}$ given a latent variable "z": $p_{\theta}(x|z)$
- \square Also, the model maps data set into the latent space: $p_{\theta}(z|x)$



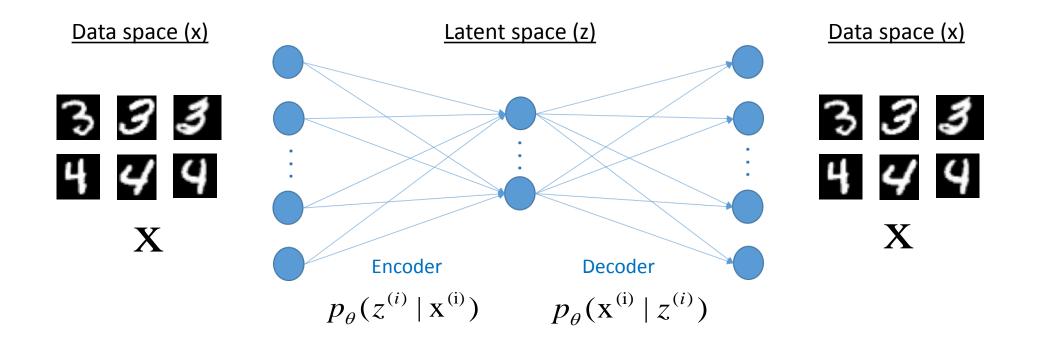
Idea of VAE

- This Intractability is well known, which can be handled with 1) Markov Chain Monte Carlos (MCMC) and 2) Variational Inference (VI).
- □ VAE uses the idea of Variational Inference and so the term "Variational" is in the name.



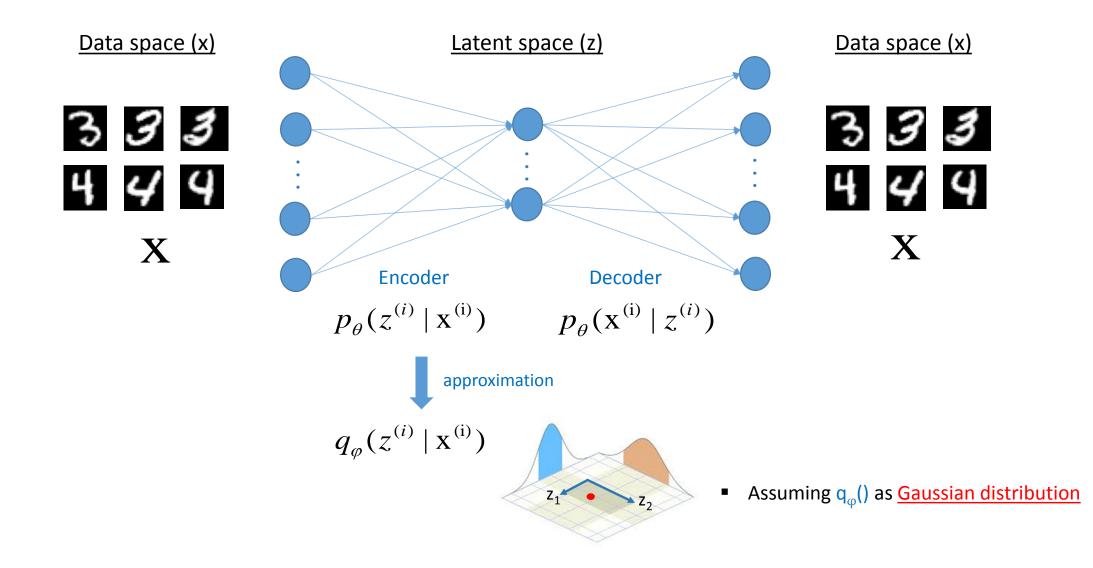
Approximate the function "p" using a neural network

□ Auto Encoder is a neural network which reproduces its input



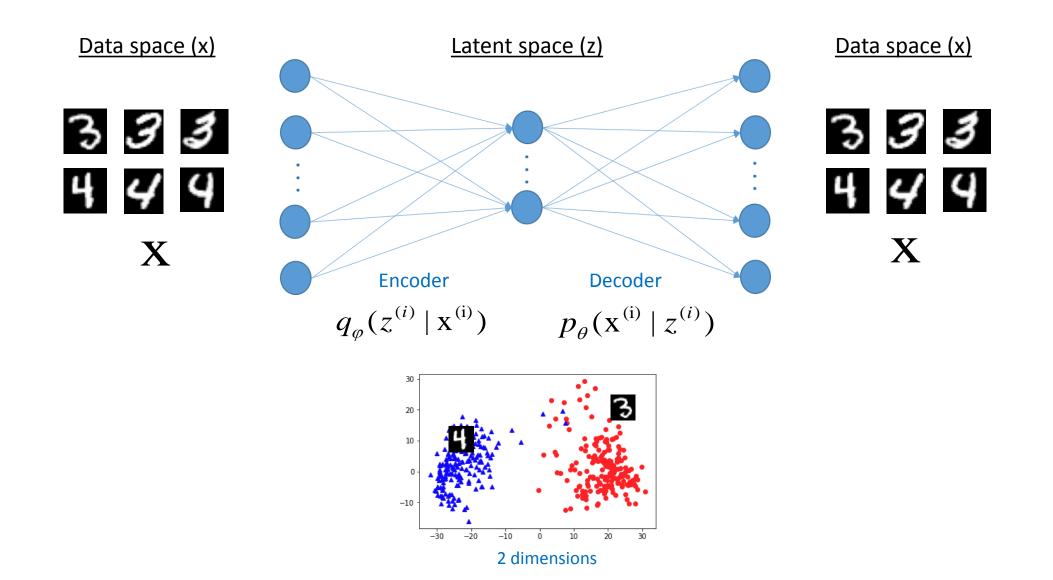
Approximate the function "p" using a neural network

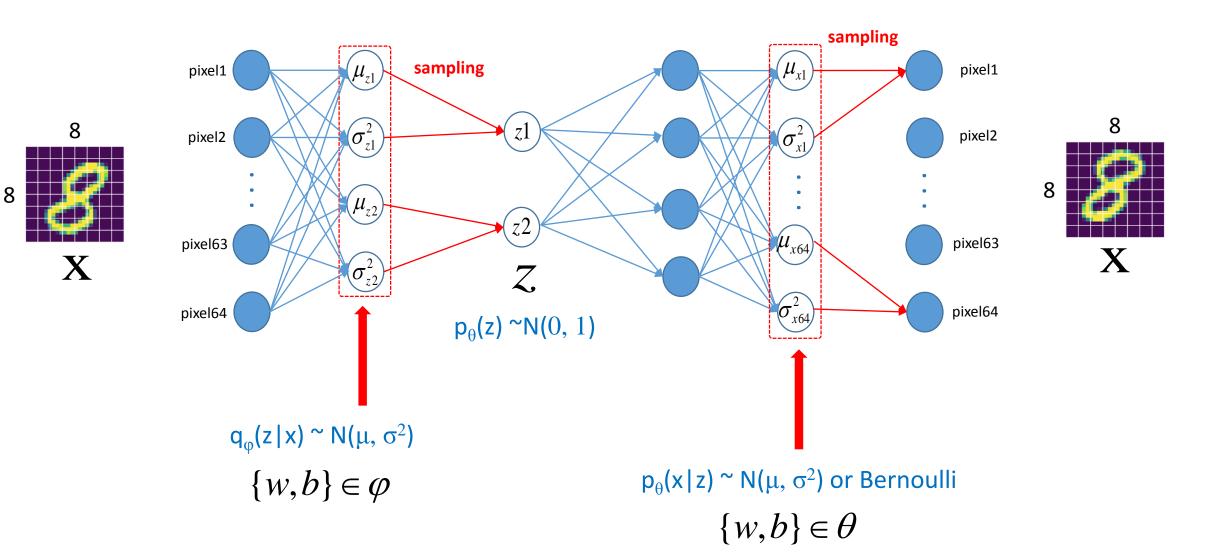
□ Auto Encoder is a neural network which reproduces its input



Approximate the function "p" using a neural network

□ Auto Encoder is a neural network which reproduces its input





A loss function for AutoEncoder

- **D** How can we train the network to obtain the parameter φ and θ ?
 - To train the neural network, a loss function is necessary. Then, the parameter " ϕ and θ " can be calculated through a backpropagation.
- **Let's derive the loss function from the likelihood function** $p_{\theta}(x)$

$$p_{\theta}(\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(N)}) = \prod_{i=1}^{N} \log p_{\theta}(\mathbf{x}^{(i)}) \longrightarrow \begin{array}{l} \text{Likelihood function showing the probability} \\ \text{that given batch data set occur with the parameter } \theta \text{ in the neural network.} \end{array}$$

$$\log p_{\theta}(\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(N)}) = \sum_{i=1}^{N} \log p_{\theta}(\mathbf{x}^{(i)}) \longrightarrow (\log) \text{ likelihood} \\ \log p_{\theta}(\mathbf{x}^{(i)}) = L(\theta, \varphi; \mathbf{x}^{(i)}) + D_{KL}(q_{\varphi}(z \mid \mathbf{x}^{(i)}) \mid\mid p_{\theta}(z \mid \mathbf{x}^{(i)})) \\ \blacksquare \quad \blacksquare \quad \text{Kullback-Leibnitz divergence showing how difference of the set of th$$

□ Since $D_{KL} \ge 0$, "L" is the lower bound of the likelihood function, which is called "ELBO" (Evidence Lower Bound)

- Kullback-Leibnitz divergence showing how difference between two posterior distributions: true posterior p(z|x) and its approximate posterior q(z|x)
- **This term is intractable because of p(z|x).**
- □ However, we know $D_{KL} \ge 0$.

$$\log p_{\theta}(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}) = \sum_{i=1}^{N} \log p_{\theta}(\mathbf{x}^{(i)})$$
Proof: If you are interested...
$$\log p(\mathbf{x}) = \sum_{z} q(z \mid \mathbf{x}) \log p(\mathbf{x}) \qquad p(x, z) = p(z, x) \\ p(x, z) = p(z \mid x) p(x) \\ = \sum_{z} q(z \mid \mathbf{x}) \log \left(\frac{p(z, \mathbf{x})}{p(z \mid \mathbf{x})}\right) \qquad p(x) = \frac{p(x, z)}{p(z \mid x)}$$

$$= \sum_{z} q(z \mid \mathbf{x}) \log \left(\frac{p(z, \mathbf{x})}{q(z \mid \mathbf{x})} \frac{q(z \mid \mathbf{x})}{p(z \mid \mathbf{x})}\right)$$

$$= \sum_{z} q(z \mid \mathbf{x}) \log \left(\frac{p(z, \mathbf{x})}{q(z \mid \mathbf{x})}\right) + \sum_{z} q(z \mid \mathbf{x}) \log \left(\frac{q(z \mid \mathbf{x})}{p(z \mid \mathbf{x})}\right)$$

$$\log p_{\theta}(\mathbf{x}^{(i)}) = L(\theta, \varphi; \mathbf{x}^{(i)}) + D_{KL}(q_{\varphi}(z \mid \mathbf{x}^{(i)}) || p_{\theta}(z \mid \mathbf{x}^{(i)}))$$

A loss function for AutoEncoder

By maximizing "L", we can maximize the likelihood function as well

$$\begin{split} \log p_{\theta}(\mathbf{x}^{(i)}) \geq & L(\theta, \varphi; \mathbf{x}^{(i)}) \end{split} \text{Lower bound of the likelihood function} \\ L(\theta, \varphi; \mathbf{x}^{(i)}) = & \sum_{z} q_{\varphi}(z \mid \mathbf{x}) \log \left(\frac{p_{\theta}(z, \mathbf{x})}{q_{\varphi}(z \mid \mathbf{x})} \right) \\ &= & \sum_{z} q_{\varphi}(z \mid \mathbf{x}) \log \left(\frac{p_{\theta}(\mathbf{x} \mid z) p_{\theta}(z)}{q_{\varphi}(z \mid \mathbf{x})} \right) \\ &= & \sum_{z} q_{\varphi}(z \mid \mathbf{x}) \log \left(\frac{p_{\theta}(z)}{q_{\varphi}(z \mid \mathbf{x})} \right) + \sum_{z} q_{\varphi}(z \mid \mathbf{x}) \log (p_{\theta}(\mathbf{x} \mid z)) \\ &= & - D_{KL}(q(z \mid \mathbf{x}^{(i)}) \parallel p(z)) + E_{q(z \mid \mathbf{x}^{(i)})}(\log p(\mathbf{x}^{(i)} \mid z)) \end{split}$$

A loss function for AutoEncoder

- By maximizing "L", we can maximize the likelihood function as well,
- In other words, the most likely model (p_{θ} and p_{ϕ}), which generates the observed data, can be obtained by maximizing the function below.

$$\log p_{\theta}(\mathbf{x}^{(i)}) \ge -D_{KL}(q_{\varphi}(z \mid \mathbf{x}^{(i)}) \parallel p_{\theta}(z)) + E_{q_{\varphi}(z \mid \mathbf{x}^{(i)})}(\log p_{\theta}(\mathbf{x}^{(i)} \mid z))$$

It can be computed in a closed form

□ $q_{\phi}(z | x) \sim N(\mu, \sigma^2)$ □ $p_{\theta}(z) \sim N(0, I)$ □ J: dimension of z

□
$$p_{\theta}(x|z) \sim N(\mu, \sigma^2)$$
 or Bernoulli
□ D: dimension of x

$$= \sum_{j=1}^{D} \left(\frac{1}{2} \log((\sigma_{x_j}^{(i)})^2) + \frac{\left(x_j^{(i)} - \mu_{x_j}\right)^2}{2\sigma_{x_j}^2} \right)$$

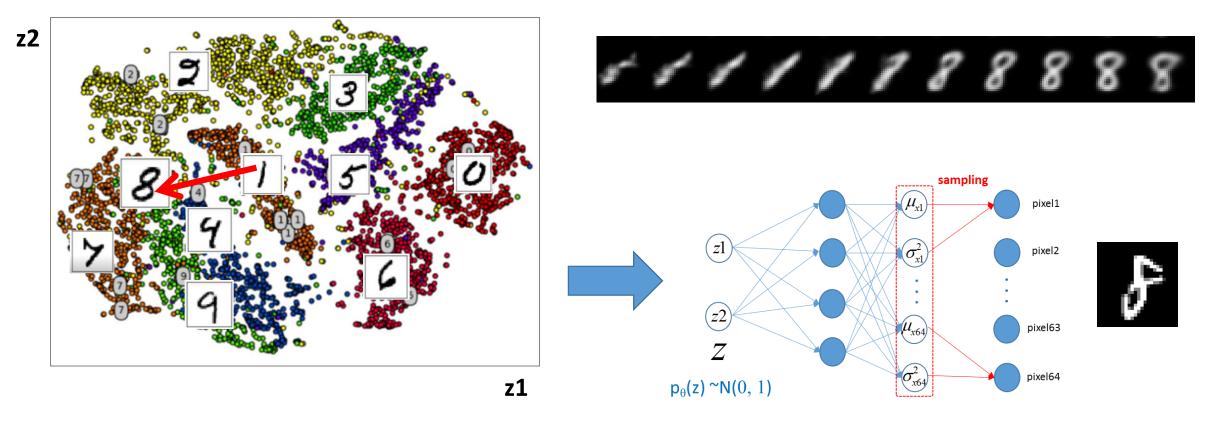
$$\min |x - \hat{x}|$$

$$= \frac{1}{2} \sum_{j=1}^{J} \left(1 + \log((\sigma_{z_j}^{(i)})^2) - (\mu_{z_j}^{(i)})^2 - (\sigma_{z_j}^{(i)})^2 \right)$$

Auto-Encoding Variational Bayes (appendix B: derivation) <u>https://arxiv.org/pdf/1312.6114.pdf</u>

Variational Auto Encoder (VAE): summary

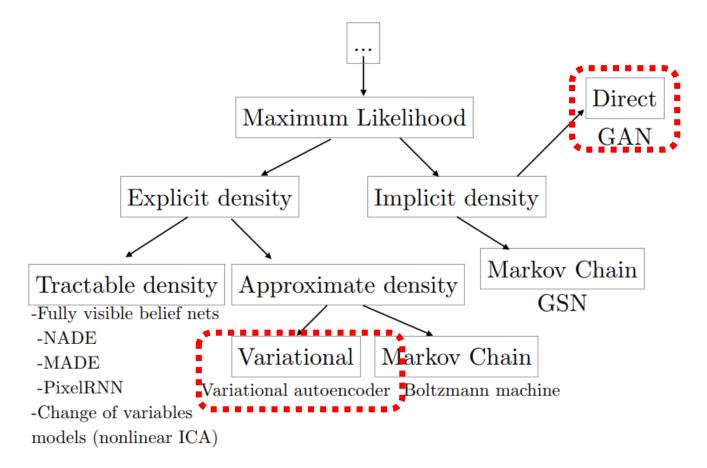
- □ A generative model based on a neural network (AutoEncoder)
- □ Its loss function is derived based on variational inference approach (Variational)
- The loss function calculates the error used to train Auto Encoder through backpropagation
 - That is the reason why it is called "Variational AutoEncoder" (VAE).



Generative Adversarial Networks (GAN)

What is the motivation of GAN instead of VAE?

- In VAE, we design a latent space which maps to a data space.
- Then, a latent variable in the space is used to generate a data sample.
- However, actually we are interested in not the latent space but a sample itself.
- □ Then, why do we generate samples directly without the latent space estimation?



GAN: Generative Adversarial Network

Based on game theory to train the system which directly generates a sample

□ Adversarial:

'GAN framework can naturally be analyzed with the tools of game theory, we call GANs

"adversarial".' - Ian Goodfellow

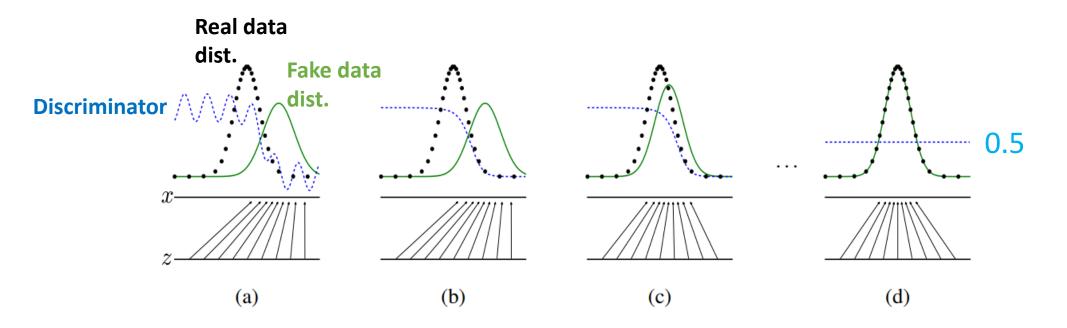


Theory: formulation of an optimization problem

- Expectation that discriminator (D) tells
 real is real (D successes)
- □ Training discriminator to maximize it
- Expectation that D tells <u>fake is real</u> (D fails)
- □ Training generator to minimize a fake

notation	description
$x \sim p_{data}(x)$	Real data sample
$z \sim p_z(z)$	A random number from N(0, 1)
G(z)	Fake data sample
D(x)=1	Probability of discriminator (D) telling that given real data "x" is real
D(G(z))=0	Probability of discriminator (D) telling that given fake data "G(z)" is fake
1 – D(G(z))	Probability of discriminator (D) telling that given fake data "G(z)" is real

$$\min_{G} \max_{D} V(D,G) = E_{x \sim p_{data}(x)} [\log D(x)] + E_{z \sim p_{z}(z)} [\log(1 - D(G(z)))]$$



□ Generator keeps trained to generate a fake one similar to real and so finally Discriminator cannot tell a fake from a real => its probability becomes 0.5.

Theory: its global optimal solution p_g=p_{data}

□ For the fixed generator (G), the optimal discriminator value (D*) is

$$\min_{G} \max_{D} V(D,G) = E_{x \sim p_{data}(x)} [\log D(x)] + E_{z \sim p_{z}(z)} [\log(1 - D(G(z)))]$$

$$\max_{D} V(D) = \int_{x} p_{data}(x) \log(D(x)) dx + \int_{z} p_{z}(z) \log(1 - D(G(z))) dz$$

$$= \int_{x} p_{data}(x) \log(D(x)) + p_{g}(x) \log(1 - D(x)) dx$$

.....

$$\frac{dV(D)}{dD} = \frac{p_{data}(x)}{D(x)} - \frac{p_g(x)}{1 - D(x)} = 0 \qquad D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}$$
$$= 0.5 (p_g = p_{data})$$

Theory: its global optimal solution p_g=p_{data}

 \Box With the optimum value of D^{*}, lower bound of V(G) is

$$\min_{G} \max_{D} V(D,G) = E_{x \sim p_{data}(x)} [\log D(x)] + E_{z \sim p_{z}(z)} [\log(1 - D(G(z)))]$$

$$\begin{split} \min_{G} V(G) &= E_{x \sim p_{data}(x)} [\log D^*(x)] + E_{z \sim p_g(x)} [\log(1 - D^*(x)))] \\ &= -\log(4) + 2 \cdot JSD(p_{data} \parallel p_g) \end{split}$$

This is the minimum value of V(G) when JSD=0 (p_g=p_{data})

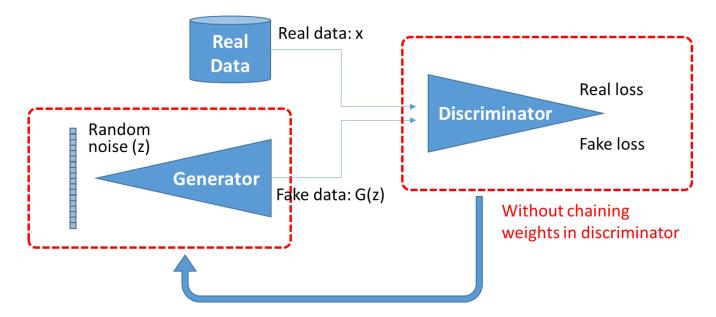
□ JSD: Jensen Shannon divergence

- A method of measuring the similarity between two probability distribution.
- $0 \leq JSD(p|q) \leq 1$

Generative Adversarial Networks (GAN): summary

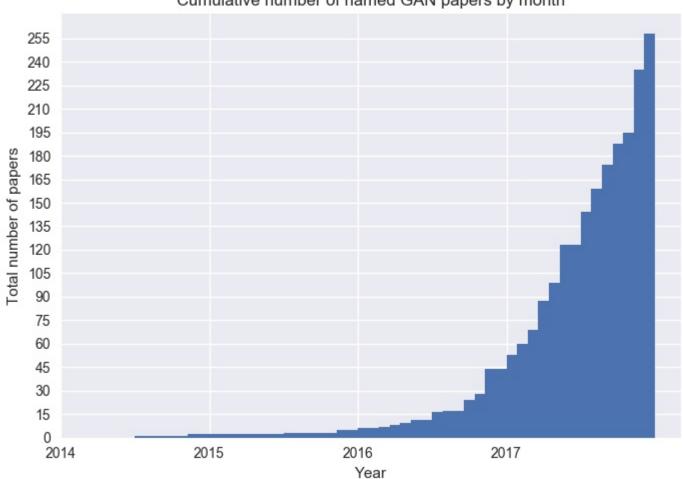
Given the system below, we train it based on the objective function.
 The objective function is derived based on game theory.

- Generator tries to make a real like fake data to deceive the discriminator
- Discriminator tries not to be deceived by the generator
- In this manner, generator learns how to make a sample close to real data.
- It is about how to define the objective function and whether it converges to an optimum solution.



Applications

Explosive growth of the popularity of GAN



Cumulative number of named GAN papers by month

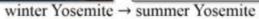
https://arxiv.org/pdf/1703.10717.pdf (BGAN)

Text to image

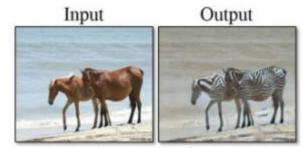
https://arxiv.org/pdf/1710.10916.pdf (StackGAN)

Style transfer

https://github.com/junyanz/CycleGAN



summer Yosemite → winter Yosemite



horse \rightarrow zebra

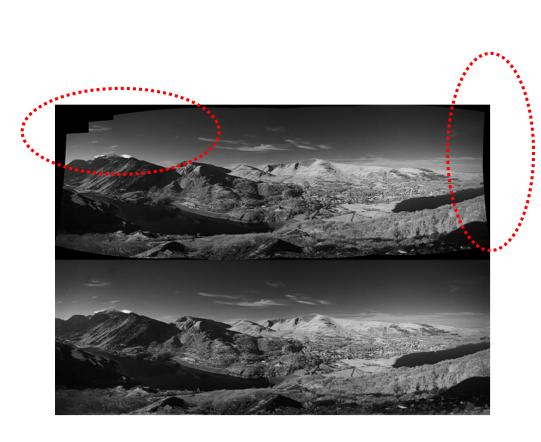
 $zebra \rightarrow horse$

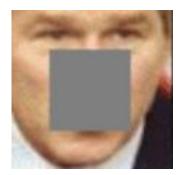
apple \rightarrow orange

orange \rightarrow apple

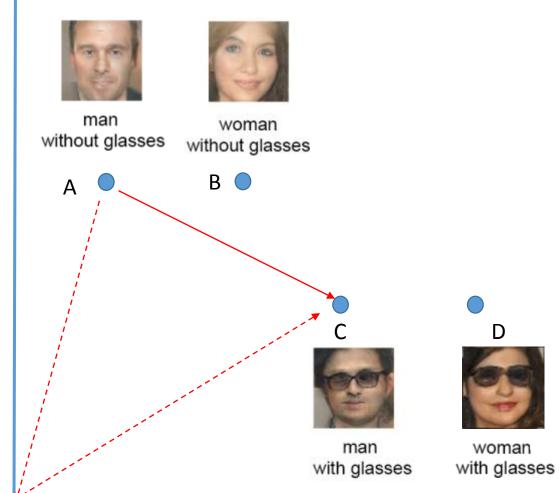
Image Completion with Deep Learning in TensorFlow

http://bamos.github.io/2016/08/09/deep-completion/





<u>https://arxiv.org/pdf/1511.06434.pdf</u>



 $A \rightarrow C = B \rightarrow D$ C-A = D-BC-A+B=D

D

woman with glasses

man with glasses

man without glasses

without glasses

woman

https://arxiv.org/pdf/1611.05507.pdf

Backup Slides

$$\begin{split} \min_{G} V(G) &= E_{x \sim p_{data}(x)} \left[\log \frac{p_{data}(x)}{p_{data}(x) + p_{g}(x)} \right] + E_{x \sim p_{g}(x)} \left[\log \frac{p_{g}(x)}{p_{data}(x) + p_{g}(x)} \right] & KL(P \parallel Q) = \sum P \log \frac{P}{Q} \\ JSD(P \parallel Q) &= \frac{1}{2} KL(P \parallel M) + \frac{1}{2} KL(Q \parallel M) \\ V(G) &= V(G) + \log(4) - \log(4) \end{split}$$

$$= -\log(4) + E_{x \sim p_{data}(x)}[\log D(x)] + E_{x \sim p_q(x)}[\log(1 - D(x))] + \log(4)$$

$$= -\log(4) + \sum p_{data}(x) \log(D^*(x)) + \log(2) + \sum p_g(x) \log(1 - D^*(x)) + \log(2)$$
$$= -\log(4) + \sum p_{data}(x) \log \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} + \log(2) + \sum p_g(x) \log \frac{p_g(x)}{p_{data}(x) + p_g(x)} + \log(2)$$

$$= -\log(4) + KL\left(p_{data} \parallel \frac{p_{data} + p_g}{2}\right) + KL\left(p_g \parallel \frac{p_{data} + p_g}{2}\right)$$

$$= -\log(4) + 2JSD(p_{data} \parallel p_g)$$